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Abstract 

An autoencoder network uses a set of recognition weights to convert an 
input vector into a code vector. It then uses a set of generative weights to 
convert the code vector into an approximate reconstruction of the input 
vector. We derive an objective function for training autoencoders based 
on the Minimum Description Length (MDL) principle. The aim is to 
minimize the information required to describe both the code vector and 
the reconstruction error. We show that this information is minimized 
by choosing code vectors stochastically according to a Boltzmann distri­
bution, where the generative weights define the energy of each possible 
code vector given the input vector. Unfortunately, if the code vectors 
use distributed representations, it is exponentially expensive to compute 
this Boltzmann distribution because it involves all possible code vectors. 
We show that the recognition weights of an autoencoder can be used to 
compute an approximation to the Boltzmann distribution and that this ap­
proximation gives an upper bound on the description length. Even when 
this bound is poor, it can be used as a Lyapunov function for learning 
both the generative and the recognition weights. We demonstrate that 
this approach can be used to learn factorial codes. 

1 INTRODUCTION 

Many of the unsupervised learning algorithms that have been suggested for neural networks 
can be seen as variations on two basic methods: Principal Components Analysis (PCA) 

3 



4 Hinton and Zemel 

and Vector Quantization (VQ) which is also called clustering or competitive learning. 
Both of these algorithms can be implemented simply within the autoencoder framework 
(Baldi and Hornik, 1989; Hinton, 1989) which suggests that this framework may also 
include other algorithms that combine aspects of both. VQ is powerful because it uses 
a very non-linear mapping from the input vector to the code but weak because the code 
is a purely local representation. Conversely, PCA is weak because the mapping is linear 
but powerful because the code is a distributed, factorial representation. We describe a 
new objective function for training autoencoders that allows them to discover non-linear, 
factorial representations. 

2 THE MINIMUM DESCRIPfION LENGTH APPROACH 

One method of deriving a cost function for the activities of the hidden units in an autoencoder 
is to apply the Minimum Description Length (MDL) principle (Rissanen 1989). We imagine 
a communication game in which a sender observes an ensemble of training vectors and must 
then communicate these vectors to a receiver. For our purposes, the sender can wait until 
all of the input vectors have been observed before communicating any of them - an online 
method is not required. Assuming that the components of the vectors are finely quantized 
we can ask how many bits must be communicated to allow the receiver to reconstruct the 
input vectors perfectly. Perhaps the simplest method of communicating the vectors would 
be to send each component of each vector separately. Even this simple method requires 
some further specification before we can count the number of bits required. To send the 
value, Xi,c, of component i of input vector c we must encode this value as a bit string. If 
the sender and the receiver have already agreed on a probability distribution that assigns 
a probability p( x) to each possible quantized value, x, Shannon's coding theorem implies 
that x can be communicated at a cost that is bounded below by -log p( x) bits. Moreover, 
by using block coding techniques we can get arbitrarily close to this bound so we shall 
treat it as the true cost. For coding real values to within a quantization width of t it is 
often convenient to assume a Gaussian probability distribution with mean zero and standard 
deviation (1'. Provided that (1' is large compared with t, the cost of coding the value x is then 
-logt + 0.5 log 21r(1'2 + x 2 /2(1'2. 

This simple method of communicating the trainjng vectors is generally very wasteful. If 
the components of a vector are correlated it is generally more efficient to convert the input 
vector into some other representation before communicating it. The essence of the MDL 
principle is that the best model of the data is the one that minimizes the total number of 
bits required to communicate it, including the bits required to describe the coding scheme. 
For an autoencoder it is convenient to divide the total description length into three terms. 
An input vector is communicated to the receiver by sending the activities of the hidden 
units and the residual differences between the true input vector and the one that can be 
reconstructed from the hidden activities. There is a code cost for the hidden activities and a 
reconstruction cost for the residual differences. In addition there is a one-time model cost 
for communicating the weights that are required to convert the hidden activities into the 
output of the net. This model cost is generally very important within the MDL framework, 
but in this paper we will ignore it. In effect, we are considering the limit in which there is 
so much data that this limited model cost is negligible. 

PCA can be viewed as a special case of MDL in which we ignore the model cost and we limit 
the code cost by only using m hidden units. The question of how many bits are required 
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to code each hidden unit activity is also ignored. Thus the only remaining term is the 
reconstruction cost. Assuming that the residual differences are encoded using a zero-mean 
Gaussian with the same predetermined variance for each component, the reconstruction 
cost is minimized by minimizing the squared differences. 

Similarly, VQ is a version of MDL in which we limit the code cost to at most log m bits by 
using only m winner-lake-all hidden units, we ignore the model cost, and we minimize the 
reconstruction cost. 

In standard VQ we assume that each input vector is converted into a specific code. Sur­
prisingly, it is more efficient to choose the codes stochastically so that the very same input 
vector is sometimes communicated using one code and sometimes using another. This type 
of "stochastic VQ" is exactly equivalent to maximizing the log probability of the data under 
a mixture of Gaussians model. Each code of the VQ then corresponds to the mean of a 
Gaussian and the probability of picking the code is the posterior probability of the input 
vector under that Gaussian. Since this derivation of the mixture of Gaussians model is 
crucial to the new techniques described later, we shall describe it in some detail. 

2.1 The "bits-back" argument 

The description length of an input vector using a particular code is the sum of the code cost 
and reconstruction cost. We define this to be the energy of the code, for reasons that will 
become clear later. Given an input vector, we define the energy of a code to be the sum 
of the code cost and the reconstruction cost. If the prior probability of code i is 1f'i and its 
squared reconstruction error is d; the energy of the code is 

k d2 
Ei = -log 1f'i - k log t + "2 log 21f'0'2 + 20'2 (1) 

where k is the dimensionality of the input vector, 0'2 is the variance of the fixed Gaussian 
used for encoding the reconstruction errors and t is the quantization width. 

Now consider the following situation: We have fitted a VQ to some training data and, for a 
particular input vector, two of the codes are equally good in the sense that they have equal 
energies. In a standard VQ we would gain no advantage from the fact that there are two 
equally good codes. However, the fact that we have a choice of two codes should be worth 
something. It does not matter which code we use so if we are vague about the choice of 
code we should be able to save one bit when communicating the code. 

To make this argument precise consider the following communication game: The sender 
is already communicating a large number of random bits to the receiver, and we want to 
compute the additional cost of communicating some input vectors. For each input vector 
we have a number of alternative codes h1 ... hi ... hm and each code has an energy, Ei. In a 
standard VQ we would pick the code, j, with the lowest energy. But suppose we pick code 
i with a probability Pi that depends on Ei. Our expected cost then appears to be higher 
since we sometimes pick codes that do not have the minimum value of E. 

< Cost >= LPiEi 
i 

(2) 

where < ... > is used to denote an expected value. However, the sender can use her 
freedom of choice in stochastically picking codes to communicate some of the random 
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bits that need to be communicated anyway. It is easy to see how random bits can be used 
to stochastically choose a code, but it is less obvious how these bits can be recovered by 
the receiver, because he is only sent the chosen code and does not know the probability 
distribution from which it was picked. This distribution depends on the particular input 
vector that is being communicated. To recover the random bits, the receiver waits until all 
of the training vectors have been communicated losslessly and then runs exactly the same 
learning algorithm as the sender used. This allows the receiver to recover the recognition 
weights that are used to convert input vectors into codes, even though the only weights that 
are explicitly communicated from the sender to the receiver are the generative weights that 
convert codes into approximate reconstructions of the input. After learning the recognition 
weights, the receiver can reconstruct the probability distribution from which each code was 
stochastically picked because the input vector has already been communicated. Since he 
also knows which code was chosen, he can figure out the random bits that were used to do 
the picking. The expected number of random bits required to pick a code stochastically is 
simply the entropy of the probability distribution over codes 

H = - LPi logpi (3) 

So, allowing for the fact that these random bits have been successfully communicated, the 
true expected combined cost is 

(4) 

Note that F has exactly the form of Helmholtz free energy. It can be shown that the 
probability distribution which minimizes F is 

e-E ; 

Pi = Lj e-Ej (5) 

This is exactly the posterior probability distribution obtained when fitting a mixture of 
Gaussians to an input vector. 

The idea that a stochastic choice of codes is more efficient than just choosing the code with 
the smallest value of E is an example of the concept of stochastic complexity (Rissanen, 
1989) and can also be derived in other ways. The concept of stochastic complexity is 
unnecessarily complicated if we are only interested in fitting a mixture of Gaussians. 
Instead of thinking in terms of a stochastically chosen code plus a reconstruction error, 
we can simply use Shannon's coding theorem directly by assuming that we code the input 
vectors using the mixture of Gaussians probability distribution. However, when we start 
using more complicated coding schemes in which the input is reconstructed from the 
activities of several different hidden units, the formulation in terms of F is much easier 
to work with because it liberates us from the constraint that the probability distribution 
over codes must be the optimal one. There is generally no efficient way of computing the 
optimal distribution, but it is nevertheless possible to use F with a suboptimal distribution 
as a Lyapunov function for learning (Neal and Hinton, 1993). In MDL terms we are simply 
using a suboptimal coding scheme in order to make the computation tractable. 

One particular class of suboptimal distributions is very attractive for computational reasons. 
In a factorial distribution the probability distribution over m d alternatives factors into d 
independent distributions over m alternatives. Because they can be represented compactly, 
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factorial distributions can be computed conveniently by a non-stochastic feed-forward 
recognition network. 

3 FACTORIAL STOCHASTIC VECTOR QUANTIZATION 

Instead of coding the input vector by a single, stochastically chosen hidden unit, we could 
use several different pools of hidden units and stochastically pick one unit in each pool. 
All of the selected units within this distributed representation are then used to reconstruct 
the input. This amounts to using several different VQs which cooperate to reconstruct the 
input. Each VQ can be viewed as a dimension and the chosen unit within the VQ is the 
value on that dimension. The number of possible distributed codes is m d where d is the 
number of VQs and m is the number of units within a VQ. The weights from the hidden 
units to the output units determine what output is produced by each possible distributed 
code. Once these weights are fixed, they determine the reconstruction error that would be 
caused by using a particular distributed code. If the prior probabilities of each code are also 
fixed, Eq. 5 defines the optimal probability distribution over distributed codes, where the 
index i now ranges over the m d possible codes. 

Computing the correct distribution requires an amount of work that is exponential in d, so 
we restrict ourselves to the suboptimal distributions that can be factored into d independent 
distributions, one for each VQ. The fact that the correct distribution is not really factorial 
will not lead to major problems as it does in mean field approximations of Boltzmann 
machines (Galland, 1993). It will simply lead to an overestimate of the description length 
but this overestimate can still be used as a bound when learning the weights. Also the excess 
bits caused by the non-independence will force the generative weights towards values that 
cause the correct distribution to be approximately factorial. 

3.1 Computing the Expected Reconstruction Error 

To perform gradient descent in the description length given in Eq. 4, it is necessary to 
compute, for each training example, the derivative of the expected reconstruction cost with 
respect to the activation probability of each hidden unit. An obvious way to approximate 
this derivative is to use Monte Carlo simulations in which we stochastically pick one hidden 
unit in each pool. This way of computing derivatives is faithful to the underlying stochastic 
model, but it is inevitably either slow or inaccurate. Fortunately, it can be replaced by a 
fast exact method when the output units are linear and there is a squared error measure for 
the reconstruction. Given the probability, hi, of picking hidden unit i in VQ v, we can 
compute the expected reconstructed output Yj for output unit j on a given training case 

(6) 

where bj is the bias of unit j and wji is the generative weight from ito j in VQ v. We 
can also compute the variance in the reconstructed output caused by the stochastic choices 
within the VQs. Under the assumption that the stochastic choices within different VQs are 
independent, the variances contributed by the different VQs can simply be added. 

(7) 
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The expected squared reconstruction error for each output unit is Vi + (Yj - dj )2 where dj is 
the desired output. So if the reconstruction error is coded assuming a zero-mean Gaussian 
distribution the expected reconstruction cost can be computed exactlyl. It is therefore 
straightforward to compute the derivatives, with respect to any weight in the network, of all 
the terms in Eq. 4. 

4 AN EXAMPLE OF FACTORIAL VECTOR QUANTIZATION 

Zemel (1993) presents several different data sets for which factorial vector quantization 
(FVQ) produces efficient encodings. We briefly describe one of those examples. The data 
set consists of 200 images of simple curves as shown in figure 1. A network containing 4 
VQs, each containing 6 hidden units, is trained on this data set. After training, the final 
outgoing weights for the hidden units are as shown in figure 2. Each VQ has learned 
to represent the height of the spline segment that connects a pair of control points. By 
chaining these four segments together the image can be reconstructed fairly accurately. For 
new images generated in the same way, the description length is approximately 18 bits for 
the reconstruction cost and 7 bits for the code. By contrast, a stochastic vector quantizer 
with 24 hidden units in a single competing group has a reconstruction cost of 36 bits and 
a code cost of 4 bits. A set of 4 separate stochastic VQs each of which is trained on a 
different 8x3 vertical slice of the image also does slightly worse than the factorial VQ (by 
5 bits) because it cannot smoothly blend the separate segments of the curve together. A 
purely linear network with 24 hidden units that performs a version of principal components 
analysis has a slightly lower reconstruction cost but a much higher code cost. 

Random 

y 

Positions 

Fixed x Positions 

-------> 

Figure 1: Each image in the spline dataset is generated by fitting a spline to 5 control 
points with randomly chosen y-positions. An image is formed by blurring the spline with 
a Gaussian. The intensity of each pixel is indicated by the area of white in the display. The 
resulting images are 8x12 pixels, but have only 5 underlying degrees of freedom. 

1 Each VQ contributes non-Gaussian noise and the combined noise is also non-Gaussian. But 
since its variance is known, the expected cost of coding the reconstruction error using a Gaussian 
prior can be computed exactly. The fact that this prior is not ideal simply means that the computed 
reconstruction cost is an upper bound on the cost using a better prior. 
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Figure 2: The outgoing weights of the hidden units for a network containing 4 VQs with 6 
units in each, trained on the spline dataset. Each 8x 12 weight block corresponds to a single 
unit, and each row of these blocks corresponds to one VQ. 

5 DISCUSSION 

A natural approach to unsupervised learning is to use a generative model that defines a 
probability distribution over observable vectors. The obvious maximum likelihood learning 
procedure is then to adjust the parameters of the model so as to maximize the sum of the 
log probabilities of a set of observed vectors. This approach works very well for generative 
models, such as a mixture of Gaussians, in which it is tractable to compute the expectations 
that are required for the application of the EM algorithm. It can also be applied to the wider 
class of models in which it is tractable to compute the derivatives of the log probability of 
the data with respect to each model parameter. However. for non-linear models that use 
distributed codes it is usually intractable to compute these derivatives since they require that 
we integrate over all of the exponentially many codes that could have been used to generate 
each particular observed vector. 

The MDL principle suggest a way of making learning tractable in these more complicated 
generative models. The optimal way to code an observed vector is to use the correct 
posterior probability distribution over codes given the current model parameters. However, 
we are free to use a suboptimal probability distribution that is easier to compute. The 
description length using this suboptimal method can still be used as a Lyapunov function 
for learning the model parameters because it is an upper bound on the optimal description 
length. The excess description length caused by using the wrong distribution has the form 
of a Kullback-Liebler distance and acts as a penalty term that encourages the recognition 
weights to approximate the correct distribution as well as possible. 

There is an interesting relationship to statistical physics. Given an input vector, each 
possible code acts like an alternative configuration of a physical system. The function 
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E defined in Eq. 1 is the energy of this configuration. The function F in Eq. 4 is 
the Helmholtz free energy which is minimized by the thermal equilibrium or Boltzmann 
distribution. The probability assigned to each code at this minimum is exactly its posterior 
probability given the parameters of the generative model. The difficulty of performing 
maximum likelihood learning corresponds to the difficulty of computing properties of the 
equilibrium distribution. Learning is much more tractable if we use the non-equilibrium 
Helmholtz free energy as a Lyapunov function (Neal and Hinton, 1993). We can then use 
the recognition weights of an autoencoder to compute some non-equilibrium distribution. 
The derivatives of F encourage the recognition weights to approximate the equilibrium 
distribution as well as they can, but we do not need to reach the equilibrium distribution 
before adjusting the generative weights that define the energy function of the analogous 
physical system. 

In this paper we have shown that an autoencoder network can learn factorial codes by using 
non-equilibrium Helmholtz free energy as an objective function. In related work (Zemel 
and Hinton 1994) we apply the same approach to learning population codes. We anticipate 
that the general approach described here will be useful for a wide variety of complicated 
generative models. It may even be relevant for gradient descent learning in situations where 
the model is so complicated that it is seldom feasible to consider more than one or two of 
the innumerable ways in which the model could generate each observation. 
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