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Abstract 
The non-linear complexities of neural networks make network solutions 
difficult to understand. Sanger's contribution analysis is here extended to 
the analysis of networks automatically generated by the cascade
correlation learning algorithm. Because such networks have cross 
connections that supersede hidden layers, standard analyses of hidden 
unit activation patterns are insufficient. A contribution is defined as the 
product of an output weight and the associated activation on the sending 
unit, whether that sending unit is an input or a hidden unit, multiplied 
by the sign of the output target for the current input pattern. 
Intercorrelations among contributions, as gleaned from the matrix of 
contributions x input patterns, can be subjected to principal 
components analysis (PCA) to extract the main features of variation in 
the contributions. Such an analysis is applied to three problems, 
continuous XOR, arithmetic comparison, and distinguishing between 
two interlocking spirals. In all three cases, this technique yields useful 
insights into network solutions that are consistent across several 
networks. 

1 INTRODUCTION 
Although neural network researchers are typically impressed with the performance 
achieved by their learning networks, it often remains a challenge to explain or even 
characterize such performance. The latter difficulties stem principally from the complex 
non-linear properties of neural nets and from the fact that information is encoded in a form 
that is distributed across many weights and units. The problem is exacerbated by the fact 
that multiple nets generate unique solutions depending on variation in both starting states 
and training patterns. 

Two techniques for network analysis have been applied with some degree of success, 
focusing respectively on either a network's weights or its hidden unit activations. Hinton 
(e.g., Hinton & Sejnowski, 1986) pioneered a diagrammatic analysis that involves 
plotting a network's learned weights. Occasionally, such diagrams yield interesting 
insights but often, because of the highly distributed nature of network representations, the 
most notable features of such analyses are the complexity of the pattern of weights and its 
variability across multiple networks learning the same problem. 
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Statistical analysis of the activation patterns on the hidden units of three layered feed
forward nets has also proven somewhat effective in understanding network performance. 
The relations among hidden unit activations, computed from a matrix of hidden units x 
input patterns, can be subjected to either cluster analysis (Elman, 1990) or PCA (Elman, 
1989) to determine the way in which the hidden layer represents the various inputs. 
However, it is not clear how this technique should be extended to multi-layer networks or 
to networks with cross connections. 

Cross connections are direct connections that bypass intervening hidden layers. Cross 
connections typically speed up learning when used in static back-propagation networks 
(Lang & Witbrock, 1988) and are an obligatory and ubiquitous feature of some generative 
learning algorithms, such as cascade-correlation (Fahlman & Lebiere, 1990). Generative 
algorithms construct their own network topologies as they learn. In cascade-correlation, 
this is accomplished by recruiting new hidden units into the network, as needed, installing 
each on a separate layer. In addition to layer-to-layer connections, each unit in a cascade
correlation network is fully cross connected to all non-adjacent layers downstream. 
Because such cross connections carry so much of the work load, any analysis restricted to 
hidden unit acti vations provides a partial picture of the network solution at best. 

Generative networks seem to provide a number of advantages over static networks, 
including more principled network design, leaner networks, faster learning, and more 
realistic simulations of hwnan cognitive development (Fahlman & Lebiere, 1990; Shultz, 
Schmidt, Buckingham, & Mareschal, in press). Thus, it is important to understand how 
these networks function, even if they seem impervious to standard analytical tools. 

2 CONTRIBUTION ANALYSIS 
One analytical technique that might be adapted for multi-layer, cross connected nets is 
contribution analysis (Sanger, 1989). Sanger defined a contribution as the triple product 
of an output weight, the activation of a sending unit, and the sign of the output target for 
that input. He argued that contributions are potentially more informative than either 
weights alone or hidden unit activations alone. A large weight may not contribute much 
if it is connected to a sending unit with a small activation. Likewise, a large sending 
activation may not contribute much if it is connected via a small weight. In contrast, 
considering a full contribution, using both weight and sending activation, would more 
likely yield valid comparisons. 

Sanger (1989) applied contribution analysis to a small version of NETtalk, a net that 
learns to convert written English into spoken English (Sejnowski & Rosenberg, 1987). 
Sanger's analysis began with the construction of an output unit x hidden unit x input 
pattern array of contributions. Various two-dimensional slices were taken from this three
dimensional array, each representing a particular output unit or a particular hidden unit. 
Each two-dimensional slice was then subjected to PCA, yielding information about either 
distributed or local hidden unit responsibilities, depending on whether the focus was on an 
individual output unit or individual hidden unit, respectively. 

3 CONTRIBUTION ANALYSIS FOR MULTI· LAYER, 
CROSS CONNECTED NETS 
We adapted contribution analysis for use with multi-layered, cross connected cascade
correlation nets. Assume a cascade-correlation network with j units (input units + hidden 
units) and k output units, being trained with i input patterns. There are j x k output 
weights in such a network, where an output weight is defined as any weight connected to 
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an output unit. A contribution c for a particular ijk combination is defined as 

Cijk = Wjk aij 2tki (1) 

where Wjk is the weight connecting sending unit j with output unit k, aij is the activation 
of sending unit j given input pattern i, and tki is the target for output unit k given input 
pattern i. The term 2tki adjusts the sign of the contribution so that it provides a measure 
of correctness. That is, positive contributions push the output activation towards the 
target, whereas negative contributions push the output activation away from the target. In 
cascade-correlation, sigmoid output units have targets of either -0.5 or +0.5. Hence, 
mUltiplying a target by 2 yields a positive sign for positive targets and a negative sign for 
negative targets. Our term 2tki is analogous to Sanger's (1989) term 2tik - 1, which is 
appropriate for targets of 0 and I, commonly used in back-propagation learning. 

In contrast to Sanger's (1989) three-dimensional array of contributions (output unit x 
hidden unit x input pattern). we begin with a two-dimensional output weight (k * j) x 
input pattern (i) array of contributions. This is because we want to include all of the 
contributions coming into the output units, including the cross connections from more 
than one layer away. Since we begin with a two-dimensional array. we do not need to 
employ the somewhat cumbersome slicing technique used by Sanger to isolate particular 
output or hidden units. Nonetheless. as will be seen, our technique does allow the 
identification of the roles of specific contributions. 

4 PRINCIPAL COMPONENTS ANALYSIS 
Correlations among the various contributions across input patterns are subjected to PCA. 
PCA is a statistical technique that identifies significant dimensions of variation in a 
multi-dimensional space (Flury, 1988). A component is a line of closest fit to a set of 
points in multi-dimensional space. The goal of PCA is to summarize a multivariate data 
set using as few components as possible. It does this by taking advantage of possible 
correlations among the variables (contributions, in our case). 

We apply PCA to contributions, as defined in Equation I, taken from networks learning 
three different problems: continuous XOR, arithmetic comparisons. and distinguishing 
between interlocking spirals. The contribution matrix for each net, as described in section 
3, is subjected to PCA using 1.0 as the minimum eigenvalue for retention. Varimax 
rotation is applied to improve the interpretability of the solution. Then the scree test is 
applied to eliminate components that fail to account for much of the variance (Cattell, 
1966). In cases where components are eliminated. the analysis is repeated with the correct 
number of components. again with a varimax rotation. Component scores for the retained 
components are plotted to provide an indication of the function of the components. 
Finally. component loadings for the various contributions are examined to determine the 
roles of the contributions from hidden units that had been recruited into the networks. 

5 APPLICATION TO THE CONTINUOUS XOR PROBLEM 
The simplicity of binary XOR and the small number of training patterns (four) renders 
application of contribution analysis superfluous. However, it is possible to construct a 
continuous version of the XOR problem that is more suitable for contribution analysis. 
We do this by dividing the input space into four quadrants. Input values are incremented 
in steps of 0.1 starting from 0.0 up to 1.0, yielding 100 x, y input pairs. Values of x up 
to 0.5 combined with values of y above 0.5 produce a positive output target (0.5), as do 
values of x above 0.5 combined with values of y below 0.5. Input pairs in the other two 
quadrants yield a negative output target (-0.5). 
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Three cascade-correlation nets are trained on this problem. Each of the three nets generates 
a unique solution to the continuous XOR problem, with some variation in number of 
hidden units recruited. PCA of contributions yields different component loadings across 
the three nets and different descriptions of components. Yet with all of that variation in 
detail, it is apparent that all three nets make the same three distinctions that are afforded 
by the training patterns. The largest distinction is that which the nets are explicitly 
trained to make, between positive and negative outputs. Two components are sufficient to 
describe the representations. Plots of rotated component scores for the 100 training 
patterns cluster into four groups of 25 points, each cluster corresponding to one of the 
four quadrants described earlier. Component loadings for the various contributions on the 
two components indicate that the hidden units play an interactive and distributed role in 
separating the input patterns into their respective quadrants. 

6 APPLICATION TO COMPARATIVE ARITHMETIC 
A less well understood problem than XOR in neural net research is that of arithmetic 
operations, such as addition and multiplication. What has a net learned when it learns to 
add, or to multiply, or to do both operations? The non-linear nature of multiplication 
makes it particularly interesting as a network analysis problem. The fact that several 
psychological simulations using neural nets involve problems of linear and non-linear 
arithmetic operations enhances interest in this sort of problem (McClelland, 1989; Shultz 
et al., in press). 

We designed arithmetic comparison tasks that provided interesting similarities to some of 
the psychological simulations. In particular, instead of simply adding or multiplying, the 
nets learn to compare sums or products to some value and then output whether the sum or 
product is greater than, less than, or equal to that comparative value. 

The addition and multiplication tasks each involve three linear input units. The first two 
input units each code a randomly selected integer in the range from 0 to 9, inclusive. The 
third input unit codes a randomly selected comparison integer. For addition problems, the 
comparison values are in the range of 0 to 19, inclusive; for multiplication the range is 0 
to 82, inclusive. Two output units code the results of the comparison. Target outputs of 
0.5 and -0.5 represent that the results of the arithmetic operation are greater than the 
comparison value, targets of -0.5 and 0.5 represent less than, and targets of 0.5 and 0.5 
represent equal to. For problems involving both addition and multiplication, a fourth 
input unit codes the type of arithmetic operation to be performed: 0 for addition, 1 for 
multiplication. 

Nets trained on either addition or multiplication have 100 randomly selected training 
patterns, with the restriction that 45 of them have correct answers of greater than, 45 have 
correct answers of less than, and 10 have correct answers of equal to. The latter constraints 
are designed to reduce the natural skew of comparative values in the high direction on 
multiplication problems. Nets trained on both addition and multiplication have 100 
randomly selected addition problems and 100 randomly selected multiplication problems, 
subject to the constraints just described. We trained three nets on addition, three on 
multiplication, and three on both addition and multiplication. 

6.1 RESULTS FOR ADDITION 
PCA of contributions in all three addition nets yield two significant components. In each 
of the three nets, the component scores form three clusters, representing the three correct 
answers. In all three nets, the first component distinguishes greater than from less than 
answers and places equal to answers in the middle; the second component distinguishes 
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equal to from unequal to answers. The primary role of the hidden unit in these nets is to 
distinguish equality from inequality. The hidden unit is not required to perform addition 
per se in these nets, which have additive activation functions. 

6.2 RESUL TS FOR MULTIPLICATION 
PCA applied to the contributions in the three multiplication nets yields from 3 to 4 
significant components. Plots of rotated component scores show that the first component 
separates greater than from less than outputs, placing equal to outputs in the middle. 
Other components further differentiate the problems in these categories into several 
smaller groups that are related to the particular values being multiplied. Rotated 
component loadings indicate that component 1 is associated not only with contributions 
coming from the bias unit and the input units, but also with contributions from some 
hidden units. This underscores the need for hidden units to capture the non-linearities 
inherent to multiplication. 

6.3 RESULTS FOR BOTH ADDITION AND MULTIPLICATION 
PCA of contributions yields three components in each of the three nets taught to do both 
addition and multiplication. In addition to the familiar distinctions between greater than, 
less than, and equal to outputs found in nets doing either addition or multiplication, it is 
of interest to determine whether nets doing both operations distinguish between adding 
and multiplying. 

Figure 1 shows the rotated component scores for net 1. Components 1 and 2 (accounting 
for 30.2% and 21.9% of the variance, respectively) together distinguish greater than 
answers from the rest. Component 3, accounting for 20.2% of the variance, separates 
equal to answers from less than answers and multiplication from addition for greater than 
answers. Together, components 2 and 3 separate multiplication from addition for less than 
answers. Results for the other two nets learning both multiplication and addition 
comparisons are essentially similar to those for net 1. 
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Figure 1. Rotated component scores for a net doing both addition and multiplication. 

6.4 DISCUSSION OF COMPARATIVE ARITHMETIC 

As with continuous XOR, there is considerable variation among networks learning 
comparative arithmetic problems. Varying numbers of hidden units are recruited by the 
networks and different types of components emerge from PCA of network contributions. 
In some cases, clear roles can be assigned to particular components, but in other cases, 
separation of input patterns relies on interactions among the various components. 
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Yet with all of this variation, it is apparent that the nets learn to separate arithmetic 
problems according to features afforded by the training set. Nets learning either addition or 
multiplication differentiate the problems according to answer types: greater than, less 
than, and equal to. Nets learning both arithmetic operations supplement these answer 
distinctions with the operational distinction between adding and multiplying. 

7 APPLICATION TO THE TWO-SPIRALS PROBLEM 
We next apply contribution analysis to a particularly difficult discrimination problem 
requiring a relatively large number of hidden units. The two-spirals problem requires the 
net to distinguish between two interlocking spirals that wrap around their origin three 
times. The standard version of this problem has two sets of 97 continuous-valued x, y 
pairs, each set representing one of the spirals. The difficulty of the two-spirals problem is 
underscored by the finding that standard back-propagation nets are unable to learn it 
(Wieland, unpublished, cited in Fahlman & Lebiere, 1990). The best success to date on 
the two-spirals problem was reported with cascade-correlation nets, which learned in an 
average of 1700 epochs while recruiting from 12 to 19 hidden units (Fahlman & Lebiere, 
1990). The relative difficulty of the two-spirals problem is undoubtedly due to its high 
degree of non-linearity. It suited our need for a relatively difficult, but fairly well 
understood problem on which to apply contribution analysis. We ran three nets using the 
194 continuous x, y pairs as inputs and a single sigmoid output unit, signaling -0.5 for 
spiral 1 and 0.5 for spiral 2. 

Because of the relative difficulty of interpreting plots of component scores for this 
problem, we focus primarily on the extreme component scores, defined as less than -lor 
greater than 1. Those x, y input pairs with extreme component scores on the first two 
components for net 1 are plotted in Figure 2 as filled points on the two spirals. There are 
separate plots for the positive and negative ends of each of the two components. The fllled 
points in each quadrant of Figure 2 define a shape resembling a tilted hourglass covering 
approximately one-half of the spirals. The positive end of component 1 can be seen to 
focus on the northeast sector of spiral 1 and the southwest sector of spiral 2. The negative 
end of component 1 has an opposite focus on the northeast sector of spiral 2 and the 
southwest sector of spiral 1. Component 2 does precisely the opposite of component 1: 
its positive end deals with the southeast sector of spiral 1 and the northwest sector of 
spiral 2 and its negative end deals with the southeast sector of spiral 2 and the northwest 
sector of spiral 1. Comparable plots for the other two nets show this same hourglass 
shape, but in a different orientation. 

The networks appear to be exploiting the symmetries of the two spirals in reaching a 
solution. Examination of Figure 2 reveals the essential symmetries of the problem. For 
each x, y pair, there exists a corresponding -x, -y pair 180 degrees opposite and lying on 
the other spiral. Networks learn to treat these mirror image points similarly, as revealed 
by the fact that the plots of extreme component scores in Figures 2 are perfectly 
symmetrical across the two spirals. If a point on one spiral is plotted, then so is the 
corresponding point on the other spiral, 180 degrees opposite and at the same distance out 
from the center of the spirals. If a trained network learns that a given x, y pair is on spiral 
1, then it also seems to know that the -x, -y pair is on spiral 2. Thus, it make good sense 
for the network to represent these opposing pairs similarly. 

Recall that contributions are scaled by the sign of their targets, so that all of the products 
of sending activations and output weights for spiral 1 are multiplied by -1. This is to 
ensure that contributions bring output unit activations close to their targets in proportion 
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to the size of the contribution. Ignoring this scaling by target, the networks possess 
sufficient information to separate the two spirals even though they represent points of the 
two spirals in similar fashion. The plot of the extreme component scores in Figure 2 
suggests that the critical information for separating the two spirals derives mainly from 
the signs of the input activations. 

Because scaling contributions by the sign of the output target appears to obscure a full 
picture of network solutions to the two-spirals problem, there may be some value in 
using unsealed contributions in network analysis. Use of unscaled contributions also 
could be justified on the grounds that the net has no knowledge of targets as it represents 
a particular problem; target information is only used in the error correction process. A 
disadvantage of using un scaled contributions is that one cannot distinguish contributions 
that facilitate vs. contributions that inhibit reaching a relatively error free solution. 

The symmetry of these network representations suggests a level of systematicity that is, 
on some accounts, not supposed to be possible in neural nets (Fodor & Pylyshyn, 1988). 
Whether this representational symmetry reflects systematicity in performance is another 
matter. One empirical prediction would be that as a net learns that x, y is on one spiral, it 
also learns at about the same time that -x, -y is on the other spiral. If confirmed, this 
would demonstrate a clear case of systematic cognition in neural nets. 

8 GENERAL DISCUSSION 
Performing PCA on network contributions is here shown to be a useful technique for 
understanding the performance of networks constructed by the cascade-correlation learning 
algorithm. Because cascade-correlation nets typically possess multiple hidden layers and 
are fully cross connected, they are difficult to analyze with more standard methods 
emphasizing activation patterns on the hidden units alone. Examination of their weight 
patterns is also problematic, particularly in larger networks, because of the highly 
distributed nature of the net's representations. 

Analyzing contributions, in contrast to either hidden unit activations or weights, is a 
naturally appealing solution. Contributions capture the influence coming into output 
units both from adjacent hidden units and from distant, cross connected hidden and input 
units. Moreover, because contributions include both sending activations and connecting 
weights, they are not unduly sensitive to one at the expense of the other. 

In the three domains examined in the present paper, PCA of the network contributions 
both confirm some expected results and provide new insights into network performance. 
In all cases examined, the nets succeed in drawing all of the important distinctions in their 
representations that are afforded by the training patterns, whether these distinctions 
concern the type of output or the operation being performed on the input. In combination 
with further experimentation and analysis of network weights and activation patterns, this 
technique could help to provide an account of how networks accomplish whatever it is 
they learn to accomplish. 

It might be of interest to apply the present technique at various points in the learning 
process to obtain a developmental trace of network performance. Would all networks 
learning under the same constraints progress through the same stages of development, in 
terms of the problem distinctions they are able to make? This would be of particular 
interest to network simulations of human cognitive development, which has been claimed 
to be stage-like in its progressions. 
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The present technique could also be useful in predicting the results of lesioning 
experiments on neural nets. If the role of a hidden unit can be identified by its association 
with a particular principal component, then it could be predicted that lesioning this unit 
would impair the function served by the component. 
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Figure 2. Extreme rotated component scores for a net on the two-spirals problem. 


