
Hoeffding Races: Accelerating Model 
Selection Search for Classification and 

Function Approximation 

Oded Maron 
Artificial Intelligence Laboratory 

Massachusetts Institute of Technology 
Cambridge, MA 02139 

Abstract 

Andrew W. Moore 
Robotics Institute 

School of Computer Science 
Carnegie Mellon University 

Pittsburgh, PA 15213 

Selecting a good model of a set of input points by cross validation 
is a computationally intensive process, especially if the number of 
possible models or the number of training points is high. Tech
niques such as gradient descent are helpful in searching through 
the space of models, but problems such as local minima, and more 
importantly, lack of a distance metric between various models re
duce the applicability of these search methods. Hoeffding Races is 
a technique for finding a good model for the data by quickly dis
carding bad models, and concentrating the computational effort at 
differentiating between the better ones. This paper focuses on the 
special case of leave-one-out cross validation applied to memory
based learning algorithms, but we also argue that it is applicable 
to any class of model selection problems. 

1 Introduction 

Model selection addresses "high level" decisions about how best to tune learning 
algorithm architectures for particular tasks. Such decisions include which function 
approximator to use, how to trade smoothness for goodness of fit and which fea
tures are relevant. The problem of automatically selecting a good model has been 
variously described as fitting a curve, learning a function, or trying to predict future 

59 



60 Maron and Moore 

0.22 
'-' e 

0.2 '-' 
~ 

= = 0.18 
';: 

~ 
7a 0.16 

;;>-
~ 0.14 e 

U 
0.12 

1 3 5 7 9 

k Nearest Neigh bors Used 

Figure 1: A space of models consisting of local-weighted-regression models with 
different numbers of nearest neighbors used. The global minimum is at one-nearest
neighbor, but a gradient descent algorithm would get stuck in local minima unless 
it happened to start in in a model where k < 4. 

instances of the problem. One can think of this as a search through the space of 
possible models with some criterion of "goodness" such as prediction accuracy, com
plexity of the model, or smoothness. In this paper, this criterion will be prediction 
accuracy. Let us examine two common ways of measuring accuracy: using a test 
set and leave-one-out cross validation (Wahba and Wold, 1975) . 

• The test set method arbitrarily divides the data into a training set and a 
test set. The learner is trained on the training set, and is then queried with 
just the input vectors of the test set. The error for a particular point is the 
difference between the learner's prediction and the actual output vector . 

• Leave-one-out cross validation trains the learner N times (where N is 
the number of points), each time omitting a different point. We attempt to 
predict each omitted point. The error for a particular point is the difference 
between the learner's prediction and the actual output vector. 

The total error of either method is computed by averaging all the error instances. 

The obvious method of searching through a space of models, the brute force ap
proach, finds the accuracy of every model and picks the best one. The time to find 
the accuracy (error rate) of a particular model is proportional to the size of the test 
set IT EST!, or the size of the training set in the case of cross validation . Suppose 
that the model space is discretized into a finite number of models IMODELSI -
then the amount of work required is O(IMODELSI x ITEST!), which is expensive. 

A popular way of dealing with this problem is gradient descent. This method can 
be applied to find the parameters (or weights) of a model. However, it cannot be 
used to find the structure (or architecture) of the modeL There are two reasons for 



Hoeffding Races: Accelerating Model Selection 61 

this. First, we have empirically noted many occasions on which the search space is 
peppered with local minima (Figure 1). Second, at the highest level we are selecting 
from a set of entirely distinct models, with no numeric parameters over which to 
hill-climb. For example, is a neural net with 100 hidden units closer to a neural net 
with 50 hiden units or to a memory-based model which uses 3 nearest neighbors? 
There is no viable answer to this question since we cannot impose a viable metric 
on this model space. 

The algorithm we describe in this paper, Hoeffding Races, combines the robustness 
of brute force and the computational feasibility of hill climbing. We instantiated the 
algorithm by specifying the set of models to be memory-based algorithms (Stan
fill and Waltz, 1986) (Atkeson and Reinkensmeyer, 1989) (Moore, 1992) and the 
method of finding the error to be leave-one-out cross validation. We will discuss 
how to extend the algorithm to any set of models and to the test set method in the 
full paper. We chose memory-based algorithms since they go hand in hand with 
cross validation. Training is very cheap - simply keep all the points in memory, and 
all the algorithms of the various models can use the same memory. Finding the 
leave-one-out cross validation error at a point is cheap as making a prediction: sim
ply "cover up" that point in memory, then predict its value using the current model. 
For a discussion of how to generate various memory-based models, see (Moore et 
al., 1992). 

2 Hoeffding Races 

The algorithm was inspired by ideas from (Haussler, 1992) and (Kaelbling, 1990) 
and a similar idea appears in (Greiner and Jurisica, 1992). It derives its name from 
Hoeffding's formula (Hoeffding, 1963), which concerns our confidence in the sample 
mean of n independently drawn points Xl, ••. , X n . The probability of the estimated 
mean Ee3t = ~ 2::l<i<n Xi being more than epsilon far away from the true mean 
Etrue after n independently drawn points is bounded by: 

where B bounds the possible spread of point values. 

We would like to say that with confidence 1 - 8, our estimate of the mean is within 
€ of the true mean; or in other words, Pr(IEtrue - Ee3tl > f) < 8. Combining the 
two equations and solving for € gives us a bound on how close the estimated mean 
is to the true mean after n points with confidence 1 - 8: 

_ j B 2 1og(2/6) 
€ - 2n 

The algorithm starts with a collection of learning boxes. We call each model a 
learning box since we are treating the models as if they were black boxes. We 
are not looking at how complex or time-consuming each prediction is, just at the 
input and output of the box. Associated with each learning box are two pieces of 
information: a current estimate of its error rate and the number of points it has 
been tested upon so far. The algorithm also starts with a test set of size N. For 
leave-one-out cross validation, the test set is simply the training set. 



62 Maron and Moore 

ERROR 
---------- ----------;; 

Uppez 
Bound 

I 

o ~------r_----_+------~----~~----_r------+_----~-------------
learning 
box #0 

learning 
box 411 

learning 
box 112 

learning 
box 413 

learning 
box 114 

learning 
box lIS 

learning 
box 116 

Figure 2: An example where the best upper bound of learning box #2 eliminates 
learning boxes #1 and #5. The size of f varies since each learning box has its own 
upper bound on its error range, B. 

At each point in the algorithm, we randomly select a point from the test set. We 
compute the error at that point for all learning boxes, and update each learning 
box's estimate of its own total error rate. In addition, we use Hoeffding's bound 
to calculate how close the current estimate is to the true error for each learning 
box. We then eliminate those learning boxes whose best possible error (their lower 
bound) is still greater than the worst error of the best learning box (its upper 
bound); see Figure 2. The intervals get smaller as more points are tested, thereby 
"racing" the good learning boxes, and eliminating the bad ones. 

We repeat the algorithm until we are left with just one learning box, or until we 
run out of points. The algorithm can also be stopped once f has reached a certain 
threshhold. The algorithm returns a set of learning boxes whose error rates are 
insignificantly (to within f) different after N test points. 

3 Proof of Correctness 

The careful reader would have noticed that the confidence {; given in the previous 
section is incorrect. In order to prove that the algorithm indeed returns a set of 
learning boxes which includes the best one, we'll need a more rigorous approach. 
We denote by ~ the probability that the algorithm eliminates what would have 
been the best learning box. The difference between ~ and {; which was glossed over 
in the previous section is that 1 - ~ is the confidence for the success of the entire 
algrithm, while 1 - {; is the confidence in Hoeffding's bound for one learning box 



Hoeffding Races: Accelerating Model Selection 63 

during one iteration of the algorithm. 

We would like to make a formal connection between Ll and {;. In order to do that, let 
us make the requirement of a correct algorithm more stringent. We'll say that the 
algorithm is correct if every learning box is within f of its true error at every iteration 
of the algorithm. This requirement encompasses the weaker requirement that we 
don't eliminate the best learning box. An algorithm is correct with confidence Ll if 
Pr{ all learning boxes are within f on all iterations} :2: 1 - Ll. 

We'll now derive the relationship between {; and Ll by using the disjunctive proba
bility inequality which states that Pr{A V B} ~ Pr{A} + Pr{B}. 

Let's assume that we have n iterations (we have n points in our test set), and that 
we have m learning boxes (LBl .. ·LBm). By Hoeffding's inequality, we know that 

Pr{ a particular LB is within f on a particular iteration} :2: 1 - {; 

Flipping that around we get: 

Pr{ a particular LB is wrong on a particular iteration} < {; 
Using the disjunctive inequality we can say 

Pr{ a particular LB is wrong on iteration 1 V 

a particular LB is wrong on iteration 2 V 

a particular LB is wrong on iteration n} ~ {; . n 

Let's rewrite this as: 

Pr{ a particular LB is wrong on any iteration} ~ {; . n 

N ow we do the same thing for all learning boxes: 

Pr{ LBl is wrong on any iteration V 

LB2 is wrong on any iteration V 

LBm is wrong on any iteration} ~ {; . n . m 

or in other words: 

Pr{ some LB is wrong in some iteration} ~ {; . n . m 

We flip this to get: 

Pr{ all LBs are within f on all iterations} :2: 1 - {; . n . m 

Which is exactly what we meant by a correct algorithm with some confidence. 
Therefore, {; = n~m. When we plug this into our expression for f from the previous 
section, we find that we have only increased it by a constant factor. In other words, 
by pumping up f, we have managed to ensure the correctness of this algorithm with 
confidence Ll. The new f is expressed as: 

f = V~B-~-(l-Og-(-2-nm-n-)--I-O-g(-~-)-) 



64 Maron and Moore 

Problem 
ROBOT 

PROTEIN 

ENERGY 

POWER 

POOL 

DISCONT 

Table 1: Test problems 

DescrIption 
10 input attributes, 5 outputs. Given an initial and a final description 
of a robot arm, learn the control needed in order to make the robot 
perform devil-sticking (Schaal and Atkeson, 1993). 
3 inputs, output is a classification into one of three classes. This is the 
famous protein secondary structure database, with some preprocessing 
(Zhang et al., 1992). 
Given solar radiation sensing, predict the cooling load for a building. 
This is taken from the Building Energy Predictor Shootout. 
Market data for electricity generation pricing period class for the new 
United Kingdom Power Market. 
The visually perceived mapping from pool table configurations to shot 
outcome for two-ball collisions (Moore, 1992). 
An artificially constructed set of points with many discontinuities. Lo
cal models should outperform global ones. 

Clearly this is an extremely pessimistic bound and tighter proofs are possible (Omo
hundro, 1993). 

4 Results 

We ran Hoeffding Races on a wide variety of learning and prediction problems. 
Table 1 describes the problems, and Table 2 summarizes the results and compares 
them to brute force search. 

For Table 2, all ofthe experiments were run using Ll = .01. The initial set of possible 
models was constructed from various memory based algorithms: combinations of 
different numbers of nearest neighbors, different smoothing kernels, and locally 
constant vs. locally weighted regression. We compare the algorithms relative to 
the number of queries made, where a query is one learning box finding its error at 
one point. The brute force method makes ITESTI x ILEARNING BOXESI queries. 
Hoeffding Races eliminates bad learning boxes quickly, so it should make fewer 
querIes. 

5 Discussion 

Hoeffding Races never does worse than brute force. It is least effective when all 
models perform equally well. For example, in the POOL problem, where there 
were 75 learning boxes left at the end of the race, the number of queries is only 
slightly smaller for Hoeffding Races than for brute force . In the ROBOT problem, 
where there were only 6 learning boxes left, a significant reduction in the number of 
queries can be seen. Therefore, Hoeffding Races is most effective when there exists 
a subset of clear winners within the initial set of models. We can then search over 
a very broad set of models without much concern about the computational expense 



Hoeffding Races: Accelerating Model Selection 65 

Table 2: Results of Brute Force vs. Hoeffding Races. 

Initial # queries queries 
learning with with Problem points learning Brute Hoeffding boxes 

boxes Force Races left 

ROBOT 972 95 92340 15637 6 
PROTEIN 4965 95 471675 349405 60 
ENERGY 2444 189 461916 121400 40 
POWER 210 95 19950 13119 48 
POOL 259 95 24605 22095 75 
DISCONT 500 95 47500 25144 29 

60000 

60000 

400 00 

:;';0000 

Figure 3: The x-axis is the size of a set of initial learning boxes (chosen randomly) 
and the y-axis is the number of queries to find a good model for the ROBOT 
problem. The bottom line shows performance by the Hoeffding Race algorithm) 
and the top line by brute force. 



66 Maron and Moore 

of a large initial set. Figure 3 demonstrates this. In all the cases we have tested, 
the learning box chosen by brute force is also contained by the set returned from 
Hoeffding Races. Therefore, there is no loss of performance accuracy. 

The results described here show the performance improvement with relatively small 
problems. Preliminary results indicate that performance improvements will increase 
as the problems scale up. In other words, as the number of test points and the 
number of learning boxes increase, the ratio of the number of queries made by 
brute force to the number of queries made by Hoeffding Races becomes larger. 
However, the cost of each query then becomes the main computational expense. 

Acknowledgements 

Thanks go to Chris Atkeson, Marina Meila, Greg Galperin, Holly Yanco, and 
Stephen Omohundro for helpful and stimulating discussions. 

References 

[Atkeson and Reinkensmeyer, 1989] C. G. Atkeson and D. J. Reinkensmeyer. Using asso
ciative content-addressable memories to control robots. In W. T. Miller, R. S. Sutton, 
and P. J. Werbos, editors, Neural Networks for Control. MIT Press, 1989. 

[Greiner and Jurisica, 1992] R. Greiner and I. Jurisica. A statistical approach to solv
ing the EBL utility problem. In Proceedings of the Tenth International conference on 
Artificial Intelligence (AAAI-92). MIT Press, 1992. 

[Haussler, 1992] D. Haussler. Decision theoretic generalizations of the pac model for neural 
net and other learning applications. Information and Computation, 100:78-150, 1992. 

[Hoeffding, 1963] Wassily Hoeffding. Probability inequalities for sums of bounded random 
variables. Journal of the American Statistical Association, 58:13-30, 1963. 

[Kaelbling, 1990] 1. P. Kaelbling. Learning in Embedded Systems. PhD. Thesis; Technical 
Report No. TR-90-04, Stanford University, Department of Computer Science, June 1990. 

[Moore et al., 1992] A. W. Moore, D. J. Hill, and M. P. Johnson. An empirical inves
tigation of brute force to choose features, smoothers and function approximators. In 
S. Hanson, S. Judd, and T. Petsche, editors, Computational Learning Theory and Nat
ural Learning Systems, Volume 9. MIT Press, 1992. 

[Moore, 1992] A. W. Moore. Fast, robust adaptive control by learning only forward mod
els. In J. E. Moody, S. J. Hanson, and R. P. Lippman, editors, Advances in Neural 
Information Processing Systems 4. Morgan Kaufmann, April 1992. 

[Omohundro, 1993] Stephen Omohundro. Private communication, 1993. 

[Pollard, 1984] David Pollard. Convergence of Stochastic Processes. Springer-Verlag, 1984. 

[Schaal and Atkeson, 1993] S. Schaal and C. G. Atkeson. Open loop stable control strate-
gies for robot juggling. In Proceedings of IEEE conference on Robotics and Automation, 
May 1993. 

[Stanfill and Waltz, 1986] C. Stanfill and D. Waltz. Towards memory-based reasoning. 
Communications of the A CM, 29(12):1213-1228, December 1986. 

[Wahba and Wold, 1975] G. Wahba and S. Wold. A completely automatic french curve: 
Fitting spline functions by cross-validation. Communications in Statistics, 4(1), 1975. 

[Zhang et al., 1992] X. Zhang, J.P. Mesirov, and D.L. Waltz. Hybrid system for protein 
secondary structure prediction. Journal of Molecular Biology, 225: 1 049-1 063, 1992. 


