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Abstract 

David B. Kirk'" 

We have designed, fabricated, and tested an analog VLSI chip 
which computes radial basis functions in parallel. We have de
veloped a synapse circuit that approximates a quadratic function. 
We aggregate these circuits to form radial basis functions. These 
radial basis functions are then averaged together using a follower 
aggregator. 

1 INTRODUCTION 

Radial basis functions (RBFs) are a mel hod for approximating a function from 
scattered training points [Powell, H)87]. RBFs have been used to solve recognition 
and prediction problems with a fair amonnt of success [Lee, 1991] [Moody, 1989] 
[Platt, 1991]. The first layer of an RBF network computes t.he distance of the input 
to the network to a set of stored memories. Each basis function is a non-linear 
function of a corresponding distance. Tht> basis functions are then added together 
with second-layer weights to produce the output of the network. The general form 
of an RBF is 

Yi = L hii<l>i (Iii - Cj Ii) , 
i 

( 1) 

where Yi is the output of the network, hij is the second-layer weight, <l>j is the 

non-linearity, C; is the jth memory stored in the network and f is the input to 
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Figure 1: The architecture of a Gaussian RBF network. 

the network. Many researchers use Gaussians to create basis functions that have a 
localized effect in input space [Poggio, 1990][Moody, 1989]: 

(2) 

The architecture of a Gaussian RBF network is shown in figure 1. 

RBFs can be implemented either via software or hardware. If high speed is not nec
essary, then computing all of the basis functions in software is adequate. However, 
if an application requires many inputs or high speed, then hardware is required. 

RBFs use a lot of operations more complex than simply multiplication and addition. 
For example, a Gaussian RBF requires an exponential for every basis function. 
Using a partition of unity requires a divide for every basis function. Analog VLSI 
is an attractive way of computing these complex operations very quickly: we can 
compute all of the basis functions in parallel, using a few transistors per synapse. 

This paper discusses an analog VLSI chip that computes radial basis functions. 
We discuss how we map the mathematica.l model of an RBF into compact analog 
hardware. We then present results from a test. chip that was fabricated. We discuss 
possible applications for the hardware architecture and future theoretical work. 

2 MAPPING RADIAL BASIS FUNCTIONS INTO 
HARDWARE 

In order to create an analog VLSI chip. we must map the idea of radial basis 
functions into transistors. In order to create a high-density chip, the mathematics 
of RBFs must be modified to be computed more naturally by transistor physics. 
This section discusses the mapping from Gaussian RBFs into CMOS circuitry. 
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Figure 2: Circuit diagram for first-layer neuron, showing t.hree Gaussian synapses 
and the sense amplifier. 

2.1 Computing Quadratic Distance 

Ideally, the first-layer synapses in figure 1 would compute a quadratic dist.ance of 
the input. to a stored value. Quadratics go to infinity for large values of their input. 
hence are hard to build in analog hardware and are not robust against outliers in tlw 
input data. Therefore, it is much more desirable to use a saturating non-linearity: 
we will use a Gaussian for a first-layer synapse, which approxima.tes a quadratic 
near its peak. 

We implement the first-layer Gaussian synapse llsing an inverter (see figure 2). The 
current running through each inverter from the voltage rail to ground is a Gaussian 
function of the inverter's input, with the peak of the Gaussian occurring halfway 
between the voltage rail and ground [Mead, 1980][Mead, 1992]. 

To adjust the center of the Gaussian, we place a capacitor between the input to thf' 
synapse and the input of the inverter. The inverter thus has a floating gat.e input.. 
We adjust the charge on the floating gate by using a combination of tunneling and 
non-avalanche hot electron injection [Anderson, 1990] [Anderson, 1992]. 

All of the Gaussian synapses for one neuron share a voltage rail. The sense amplifier 
holds t.hat voltage rail at a particular volt.agf>. l/ref. The output of the sense ampli
fier is a voltage which is linear in t.he total current being drawn by the Gaussian 
synapses. We use a floating gate in the sense amplifier to ensure that the output. 
of the sense amplifier is known when the input to the network is at a known state. 
Again, we adjust the floating gate via tunneling and injection. 

Figure 3 shows the output of the sense amplifier for four different. neurons. The 
data was taken from a real chip, described in section 3. The figure shows that the 
top of a Gaussian approximates a quadratic reasonably well. Also. thf' width and 
heights of the outputs of each first-layer neuron ma.tch very well. because the circuit 
is operated above threshold . 
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Figure 3: Measured output of set of four first-layer neurons. All of the synapses of 
each neuron are programmed to peak at the same voltage. The x-axis is the input 
voltage, and the y-axis is the voltage output of the sense amplifier 

2.2 Computing the Basis Function 

To comput.e a Gaussian basis function, t.he distance produced by the first layer 
needs to be exponentiated. Since the output of the sense amplifier is a voltage 
negatively proportional to the distance, a subthreshold transistor can perform this 
exponentiation. 

However, subthreshold circuits can be slow. Also, the choice of a Gaussian basis 
function is somewhat arbitrary [Poggio, 1990]. Therefore, we choose to adjust the 
sense amplifier to produce a voltage that is both above and below threshold. The 
basis function that the chip comput.es can be expressed as 

S· J = Lk Gaussian(Ik - Cjk); 

_ { (5j - Of~, if Sj > 0; 
- 0, otherwise. 

(3) 

(4) 

where 0 is a threshold that is set by how much current is required by the sense 
amplifier to produce an output equal to thf~ threshold voltage of a N-type transistor. 

Equations 3 and 4 have an intuitive explanation. Each first-layer synapse votes on 
whether its input matched its stored value. The sum of these votes is Sj. If the 
sum Sj is less than a threshold 0, then the basis function cPj is zero. However, 
if the number of votes exceeds the threshold, then the basis function turns on. 
Therefore, one can adjust the dimensionality of the basis function by adjusting 0: 
the dimensionality is r N - 0 -11, where N is the numher of inputs to the network. 

Figure 4 shows how varying 0 changes the basis function, for N = 2. The input to 
the network is a two-dimensional space, represented by loca.tion on the page. The 
value of the basis function is represented by t.he darkness of the ink. Setting 0 = 1 
yields the basis function on the left, which is a fuzzy O-dimnnsional point. Setting 
o = 0 yields the basis function on the right., which is a union of fuzzy I-dimensional 
lines. 
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Figure 4: Examples of two simulated basis functions with differing dimensionality. 

Having an adjustable dimension for basis functions is useful, because it increases the 
robustness of the basis function. A Gaussian radial basis function is non-zero only 
when all elements of the input vector roughly match the center of the Gaussian. By 
using a hardware basis function, we can allow certain inputs not t.o match, while 
still turning on the basis function. 

2.3 Blending the Basis Functions 

To make the blending of the basis functions easier to implement in analog VLSI, 
we decided to use an alternative method for basis function combination, called the 
partition of unity [Moody, 1989]: 

(5) 

The partition of unity suggests that the second layer should compute a weighted 
average of first-layer outputs, not just a weighted sum. We can t:ompute a weighted 
average reasonably well with a follower aggregator used in the linear region [Mead, 
1989]. 

Equations 4 and 5 can both be implemented by using a wide-range amplifier as a 
synapse (see figure 5). The bias of the amplifier is the outpu t. of the semje amplifier. 
That way, the above-threshold non-linearity of the bias transist.or is applied to the 
output of the first layer and implements (~quation 4. The amplifier then attempts 
to drag the output of the second-layer neuron towards a stored value hij and im
plements equation 5. We store the value on a floating gate, using tunneling and 
injection . 

The follower aggregator does not implement equation 5 perfectly: the amplifiers 
saturate, hence introduce a non-linearity. A follower aggregator implements 

L tanh(a(hij - yd)</Jj = O. 
j 

(6) 
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output of network 

Figure 5: Circuit diagram for second-layer synapses. 

We use a capacitive divider to increase the linear range (decrease a) of the amplifiers. 
However. the non-linearity of the amplifiers may be beneficial, because it reduces 
the effect of outliers in the stored h i j values. 

3 RESULTS 

We fabricated the chip in 2 micron CMOS. The current version of the chip has 8 
inputs, 159 basis functions and 4 outputs. The chip size is 2.2 millimeters by 9.6 
millimeters 

The core radial basis function circuitry works end-to-end. By measuring the output 
of the sense amplifier, we can measure the response of the first layer, which is shown 
in figure 3. Experiments show that the average width of the first-layer Gaussians 
is 0.350 volts, with a standard deviation of 23 millivolts. The centers of the first
layer Gaussians can be programmed more accurately than 15 millivolts, which is 
the resolution of the test setup for this chip. Further experiments show that the 
second-layer followers are linear to within 4% over 5 volts . Due to one mis-sized 
transistor, programming the second layer accurately is difficult . 

We have successfully tested the chip at 90 kHz, which is the speed limit of the 
current test setup. We have not yet tested the chip at its full speed. The static 
power dissipation of the chip is 2 milliwatts. 

Figure 6 shows an example of real end-to-end output of the chip . All synapses for 
each first-layer neuron are programmed to the same value. The first-Ia.yer neurons 
are programmed to a ramp: each neuron is programmed to respond t.o a voltage 
32 millivolts higher than the previous neuron. The second layer neurons are pro
gramnled t.o values shown by y-values of the dots in figure 6. The output of the 
chip is shown as the solid line in figure 6. The output is measured as all of the 
inputs to the chip are swept simultaneously. The chip splines and smooths out the 
noisy stored second-layer values. Notice that the stored second-layer values are low 
for inputs near 2.5 V: the output of a chip is correspondingly lower. 
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Figure 6: Example of end-to-end output measured from the chip . 

4 FUTURE WORK 

The mathematical model of the hardware network suggests interesting theoretical 
future work. There are t.wo novel features of this model: the variable dimension
ality of the basis functions, and the non-linearity in the partition of unity. More 
simulation work needs to be done to see how much of an benefit these features yield . 

The chip architecture discussed in this paper is suitable for many medium
dimensional function mapping problems where radial basis functions are appro
priate. For example, the chip is useful for high speed control, optical character 
recognition, and robotics. 

One application of the chip we have studied further is the antialiasing of printed 
characters, with proportional spacing, multiple fonts, and a.rbitrary scaling. Each 
antialiased pixel has an intensity which is the integral of the character's partial 
coverage of that pixel convolved with some filter. The chip could perform a function 
int.erpolation for each pixel of each character . The function being interpolated is the 
intensity integral, based on the subpixel coverage a.'i convolv('d with the antialiasing 
filter kernel. Figure 7 shows the results of the anti-aliasing of the character using a 
simulation of the chip. 

5 CONCLUSIONS 

We have described a multi-layer analog \'LSI neural network chip that computes 
radial basis functions in parallel. We use inverters as first-layer synapses, to compute 
Gaussians that approximate quadratics. \Ve use follower aggregators a.'55econd-Iayer 
neurons, to compute the basis functions and to blend the ba.'5is functions using a 
partition of unity. Preliminary experiments with a test chip shows that the core 
radial basis function circuitry works. In j he future, we will explore the new basis 
function model suggested by the hardware and further investigate applications of 
the chip. 
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Figure 7: Three images of the letter "a". The image on the left is the high resolution 
anti-aliased version of the character. The middle image is a smaller version of the 
left image. The right image is the chip simulation, trained to be close to the middle 
image, by using the left image as the training data. 

Acknowledgements 

We would like to thank Federico Faggin and Carver Mead for their good advice. 
Thanks to John Lazzaro who gave us a new version of Until, a graphics editor. 
We would also like to thank Steven Rosenberg and Bo Curry of Hewlett-Packard 
Laboratories for their suggestions and support. 

References 

Anderson, J., Mead, C., 1990, MOS Device for Long-Term Learning, U. S. Patent 
4,935,702. 

Anderson, J., Mead, C., Allen, T., Wall, M., 1992, Adaptable MOS Current Mirror, 
U. S. Patent 5,160,899. 

Lee, Y., HJ91, Handwritten Digit Recognition Using k Nearest-Neighbor, Radial 
Basis Function, and Backpropagation Neural Networks, Neural Computation, vol. 3, 
no. 3, 440-449. 

Mead, C., Conway, L., 1980, Introduction to VLSI Systems, Addison-Wesley, Read
ing, MA. 

Mead, C., 1989, Analog VLSI and Neural Systems, Addison-Wesley, Reading, MA. 

Mead, C., Allen, T., Faggin, F., Anderson, J., 1992, Synaptic Element and Array, 
U. S. Patent 5,083,044. 

Moody, J., Darken, C., 1989, Fast Learning in Networks of Locally-Tuned Process
ing Units, Neural Computation, vol. 1, no. 2,281-294. 

Platt, J., 1991, Learning by Combining Memorization and Gradient Descent, In: 
Advances in Neural Information Processing 3, Lippman, R., Moody, J .. Touretzky, 
D., eds., Morgan-Kaufmann, San Mateo, CA, 714-720. 

Poggio, T ., Girosi, F., 1990, Regularization Algorithms for Learning Tha.t Are 
Equivalent to Multilayer Networks, Scienre, vol. 247, 978-982. 

Powell, M. J. D., 1987, Radial Basis Fundions for Multivariable Interpolation: A 
Review, In: Algorithms for Approximation, J. C. Mason, M. G. Cox, eds., Claren
don Press, Oxford. 


