
Learning Cellular Automaton Dynamics 
with Neural Networks 

N H Wulff* and J A Hertz t 
CONNECT, the Niels Bohr Institute and Nordita 

Blegdamsvej 17, DK-2100 Copenhagen 0, Denmark 

Abstract 

We have trained networks of E - II units with short-range connec­
tions to simulate simple cellular automata that exhibit complex or 
chaotic behaviour. Three levels of learning are possible (in decreas­
ing order of difficulty): learning the underlying automaton rule, 
learning asymptotic dynamical behaviour, and learning to extrap­
olate the training history. The levels of learning achieved with and 
without weight sharing for different automata provide new insight 
into their dynamics. 

1 INTRODUCTION 

Neural networks have been shown to be capable of learning the dynamical behaviour 
exhibited by chaotic time series composed of measurements of a single variable 
among many in a complex system [1, 2, 3]. In this work we consider instead cellular 
automaton arrays (CA)[4], a class of many-degree-of-freedom systems which exhibits 
very complex dynamics, including universal computation. We would like to know 
whether neural nets can be taught to imitate these dynamics, both locally and 
globally. 

One could say we are turning the usual paradigm for studying such systems on 
its head. Conventionally, one is given the rule by which each automaton updates 
its state, and the (nontrivial) problem is to find what kind of global dynamical 

·Present address: NEuroTech AjS, Copenhagen, Denmark 
t Address until October 1993: Laboratory of Neuropsychology, NIMH, Bethesda MD 

20892. email: hertz@nordita.dk 

631 



632 Wulff and Hertz 

behaviour results. Here we suppose that we are given the history of some CA, and 
we would like, if possible, to find the rule that generated it. 

We will see that a network can have different degrees of success in this task, de­
pending on the constraints we place on the learning. Furthermore, we will be able 
to learn something about the dynamics of the automata themselves from knowing 
what level of learning is possible under what constraints. 

This note reports some preliminary investigations of these questions. We study 
only the simplest automata that produce chaotic or complex dynamic behaviour. 
Nevertheless, we obtain some nontrivial results which lead to interesting conjectures 
for future investigation. 

A CA is a lattice of formal computing units, each of which is characterized by a 
state variable Si(t), where i labels the site in the lattice and t is the (digital) time. 
Every such unit updates itself according to a particular rule or function f( ) of its 
own state and that of the other units in its local neighbourhood. The rule is the 
same for all units, and the updatings of all units are simultaneous. 

Different models are characterized by the nature of the state variable (e.g. binary, 
continuous, vector, etc), the dimensionality of the lattice, and the choice of neigh­
bourhood. In the two cases we study here, the neighbourhoods are of size N = 3, 
consisting of the unit itself and its two immediate neighbours on a chain, and 
N = 9, consisting of the unit itself and its 8 nearest neighbours on a square lattice 
(the 'Moore neighbourhood'). We will consider only binary units, for which we take 
Si(t) = ±1. Thus, if the neighbourhood (including the unit itself) includes N sites, 
f( ) is a Boolean function on the N -hypercube. There are 22N such functions. 

Wolfram [4) has divided the rules for such automata further into three classes: 

1. Class 1: rules that lead to a uniform state. 

2. Class 2: rules that lead to simple stable or periodic patterns. 

3. Class 3: rules that lead to chaotic patterns. 

4. Class 4: rules that lead to complex, long-lived transient patterns. 

Rules in the fourth cla.ss lie near (in a sense not yet fully understood [5)) a critical 
boundary between classes 2 and 3. They lead eventually to asymptotic behaviour 
in class 2 (or possibly 3); what distinguishes them is the length of the transient. It 
is classes 3 and 4 that we are interested in here. 

More specifically, for class 3 we expect that after the (short) initial transients, the 
motion is confined to some sort of attractor. Different attractors may be reached 
for a given rule, depending on initial conditions. For such systems we will focus 
on the dynamics on these attractors, not on the short transients. We will want to 
know what we can learn from a given history about the attractor characterizing it, 
about the asymptotic dynamics of the system generally (i.e. about all attractors), 
and, if possible, about the underlying rule. 

For class 4 CA, in contra.st, only the transients are of interest. Different initial 
conditions will give rise to very different transient histories; indeed, this sensitivity 
is the dynamical ba.sis for the capability for universal computation that has been 



Learning Cellular Automaton Dynamics with Neural Networks 633 

proved for some of these systems. Here we will want to know what we can learn 
from a portion of such a history about its future, as well as about the underlying 
rule. 

2 REPRESENTING A CA AS A NETWORK 

Any Boolean function of N arguments can be implemented by a ~-n unit of order 
P ::; N with a threshold activation function, i.e. there exist weights wJlh ... jp such 
that 

I(SI, S2 ... SN) = sgn [. L . wJd~ ... jp Sjl Sh ... Sjp] . (1) 
Jl.J~.·"JP 

The indices ile run over the sites in the neighbourhood (1 to N) and zero, which 
labels a constant formal bias unit So = 1. Because the updating rule we are looking 
for is the same for the entire lattice, the weight WJ1 ... jp doesn't depend on i. Fur­
thermore, because of the discrete nature of the outputs, the weights that implement 
a given rule are not unique; rather, there is a region of weight space for each rule. 

Although we could work with other architectures, it is natural to study networks 
with the same structure as the CA to be simulated. We therefore make a lattice 
of formal 1: - n neurons with short-range connections, which update themselves 
according to 

Vi(t+ 1) = 9 r.~ Wit ... jPVjl(t) ... Vjp(t)] , 
Jt"'Jp 

(2) 

In these investigations, we have assumed that we know a priori what the relevant 
neighbourhood size is, thereby fixing the connectivity of the network. At the end of 
the day, we will take the limit where the gain of the activation function 9 becomes 
infinite. However, during learning we use finite gain and continuous-valued units. 

We know that the order P of our ~ - n units need not be higher than the neigh­
bourhood size N. However, in most cases a smaller P will do. More precisely, a 
network with any P > ~N can in principle (Le. given the right learning algorithm 
and sufficient training examples) implement almost all possible rules. This is an 
asymptotic result for large N but is already quite accurate for N = 3, where only 
two of the 256 possible rules are not implementable by a second-order unit, and 
N = 5, where we found from simple learning experiments that 99.87% of 10000 
randomly-chosen rules could be implemented by a third-order unit. 

3 LEARNING 

Having chosen a suitable value of P, we can begin our main task: training the 
network to simulate a CA, with the training examples {Si(t) -t Si(t + I)} taken 
from a particular known history. 

The translational invariance of the CA suggests that weight sharing is appropriate 
in the learning algorithm. On the other hand, we can imagine situations in which 
we did not possess a priori knowledge that the CA rule was the same for all units, 



634 Wulff and Hertz 

or where we only had access to the automaton state in one neighbourhood. This 
case is analogous to the conventional time series extrapolation paradigm, where 
we typically only have access to a few variables in a large system. The difference 
is that here the accessible variables are binary rather than continuous. In these 
situations we should or are constrained to learn without each unit having access to 
error information at other units. In what follows we will perform the training both 
with and without weight sharing. The differences in what can be learned in the two 
cases will give interesting information about the CA dynamics being simulated. 

Most of our results are for chaotic (class 3) CA. For these systems, this training 
history is taken after initial transients have died out. Thus many of the 2N possible 
examples necessary to specify the rule at each site may be missing from the training 
set, and it is possible that our training procedure will not result in the network 
learning the underlying rule of the original system. It might instead learn another 
rule that coincides with the true one on the training examples. This is even more 
likely if we are not using weight sharing, because then a unit at one site does not 
have access to examples from the training history at other sites. 

However, we may relax our demand on the network, asking only that it evolve 
exactly like the original system when it is started in a configuration the original 
system could be in after transients have died out (Le. on an attractor of the original 
system). Thus we are restricting the test set in a way that is "fairer" to the network, 
given the instruction it has received. 

Of course, if the CA has more than one attractor, several rules which yield the 
same evolution on one attractor need not do so on another one. It is therefore 
possible that a network can learn the attractor of the training history (Le. will 
simula.te the original system correctly on a part of the history subsequent to the 
training sequence) but will not be found to evolve correctly when tested on data 
from another attractor. 

For class 4 automata, we cannot formulate the distinctions between different levels 
of learning meaningfully in terms of attractors, since the object of interest is the 
transient portion of the history. Nevertheless, we can still ask whether a network 
trained on part of the transient can learn the full rule, whether it can simulate the 
dynamics for other initial conditions, or whether it can extrapolate the training 
history. 

We therefore distinguish three degrees of successful learning: 

1. Learning the rule, where the network evolves exactly like the original system 
from any initial configuration. 

2. Learning the dynamics, the intermediate case where the network can simu­
late the original system exactly after transients, irrespective of initial con­
ditions, despite not having learned the full rule. 

3. Learning to continue the dynamics, where the successful simulation of the 
original system is only achieved for the particular initial condition used to 
generate the training history. 

Our networks are recurrent, but because they have no hidden units, they can be 
trained by a simple variant of the delta-rule algorithm. It can be obtained formally 



Learning Cellular Automaton Dynamics with Neural Networks 635 

from gradient descent on a modified cross entropy 

E = ~ '" [(1 + Si(t)) log 1 + Si~t~ + (1 _ Si(t)) log 1 - ~~~t~l 8[-Si(t)Vi(t)] (3) 
L l+v.-t 1- ·t it t t 

We used the online version: 

f!lwith ... jp = 7]8[-Si(t+ l)l/i(t+ l)J[Si(t+ 1) - Vi(t+ l)]l';l(t)V}l(t).·. V}p(t) (4) 

This is like an extension of the Adatron algorithm[6} to E-n units, but with the 
added feature that we are using a nonlinear activation function. 

The one-dimensional N = 3 automata we simulated were the 9 legal cha.otic ones 
identified by Wolfram l4]. Using his system for labeling the rules, these are rules 
18, 22, 54, 90, 122, 126, 146, 150, and 182. We used networks of order P = 3 
so that all rules were learnable. (Rule 150 would not have been learnable by a 
second-order net.) Each network was a chain 60 units long, subjected to periodic 
boundary conditions. 

The training histories {Si (t)} were 1000 steps long, beginning 100 steps after ran­
domly chosen initial configurations. To test for learning the rules, all neighbourhood 
configurations were checked at every site. To test for learning the dynamics, the 
CA were reinitialized with different random starting configurations and run 100 
steps to eliminate transients, after which new test histories of length 100 steps were 
constructed. Networks were then tested on 100 such histories. The test set for 
continuing the dynamics was made simply by allowing the CA that had generated 
the training set to continue for 100 more steps. 

There are no class 4 CA among the one-dimensional N = 3 systems. As an example 
of such a rule, we chose the Game of Life which is defined on a square lattice with 
a neighbourhood size N = 9 and has been proved capable of universaJ computation 
(see, e.g. [7, 8]). We worked with a lattice of 60 x 60 units. 

The training history for the Game of Life consisted of 200 steps in the transient. The 
trained networks were tested, as in the case of the chaotic one-dimensional systems, 
on all possible configurations at every site (learning the rule), on other transient 
histories generated from different initial conditions (learning the dynamics), and 
on the evolution of the original system immediately following the training history 
(learning to continue the dynamics). 

4 RESULTS 

With weight sharing, it proved possible to learn the dynamics for all 9 of the one­
dimensional chaotic rules very easily. In fact, it took no more than 10 steps of the 
training history to achieve this. 

Learning the underlying rules proved harder. After training on the histories of 
1000 steps, the networks were able to do so in only 4 of the 9 cases. No qualitative 
difference in the two groups of patterns is evident to us from looking at their histories 
(Fig. 1). Nevertheless, we conclude that their ergodic properties must be different, 
at lea.st quantitatively. 

Life was also easy with weight sharing. Our network succeed in learning the under­
lying rule starting almost anywhere in the long transient. 



636 Wulff and Hertz 

22 54 90 

126 182 

Figure 1: Histories of the 4 one-dimensional rules that could be learned (top) and 
the 5 that could not (bottom) . (Learning with weight sharing.) 

Without weight sharing, all learning naturally proved more difficult. While it was 
possible to learn to continue the dynamics for all the one-dimensional chaotic rules, 
it proved impossible except in one case (rule 22) to learn the dynamics within 
the training history of 1000 steps. The networks failed on about 25% of the test 
histories. It was never possible to learn the underlying rule. Thus, apparently these 
chaotic states are not as homogeneous as they appear (at least on the time scale of 
the training period). 

Life is also difficult without weight sharing. Our network was unable even to con­
tinue the dynamics from histories of several hundred steps in the transient (Fig. 2). 

5 DISCUSSION 

In previous studies of learning chaotic behaviour in single-variable time series 
(e.g. [1, 2, 3]), the test to which networks have been put has been to extrapolate 
the training series, i.e. to continue the dynamics. We have found that this is also 
possible in cellular automata for all the chaotic rules we have studied, even when 
only local information about the training history is available to the units. Thus, the 
CA evolution history at any site is rich enough to permit error-free extrapolation. 

However, local training data are not sufficient (except in one system, rule 22) to 
permit our networks to pass the more stringent test oflearning the dynamics. Thus, 
viewed from any single site, the different attra.ctors of these systems are dissimilar 
enough that data from one do not permit generalization to another. 



Learning Cellular Automaton Dynamics with Neural Networks 637 

. Q(. '\1(0 . 
-= .=:;" 

, , , , -. t ..... - , 
... JI~ oc;> . 

~ -0- ~ 

:~". Ii,. , 
I 

('v 
~. 

~ (. 
, .~ . ..,.~. 

0.i!-o- ,- 0 - +.~. 
,."'~ 

, 
.~ , - -

~ . I -;. 
-.~ -- _v .-. 

Figure 2: The original Game of Life CA (left) and the network (right), both 20 
steps a.fter the end of the training history. (Training done without weight sharing.) 

With the access to training data from other sites implied by weight sharing, the 
situation changes dramatically. Learning the dynamics is then very easy, implying 
that all possible asymptotic local dynamics that could occur for any initial condition 
actually do occur somewhere in the system in any given history. 

Furthermore, with weight sharing, not only the dynamics but also the underlying 
rule can be learned for some rules. This suggests that these rules are ergodic, in 
the sense that all configurations occur somewhere in the system at some time. This 
division of the chaotic rules into two classes according to this global ergodicity is a 
new finding . 

Turning to our class 4 example, Life proves to be impossible without weight sharing, 
even by OUr most lenient test, continuing the dynamics. Thus, although one might 
be tempted to think that the transient in Life is so long that it can be treated 
opera.tionallyas if it were a chaotic attractor, it cannot. For real chaotic attractors, 
in both in the CA studied here and continuous dynamical systems, networks can 
learn to continue the dynamics on the basis of local data, while in Life they cannot. 

On the other hand, the result that the rule of Life is easy to learn with weight 
sharing implies that looked at globally, the history of the transient is quite rich. 
Somewhere in the system, it contains sufficient information (together with the a 
priori knowledge that a second-order network is sufficient) to allow us to predict 
the evolution from any configuration correctly. 

This study is a very preliminary one and raises more questions than it answers. We 
would like to know whether the results we have obtained for these few simple systems 
are generic to complex and chaotic CA. To answer this question we will have to study 
systems in higher dimensions and with larger updating neighbourhoods. Perhaps 
significant universal patterns will only begin to emerge for large neighborhoods (cf 
[5]). However, we have identified some questions to ask about these problems. 



638 Wulff and Hertz 

References 

[1J A Lapedes and R Farber, Nonlinear Signal Processing Using Neural Networks: 
Prediction and System Modelling, Tech Rept LA-UR-87 -2662, Los Alamos N a­
tional Laboratory. Los Alamos NM USA 

[2] A S Weigend, B A Huberman a.nd D E Rumelhart, Int J Neural Systems 1 
193-209 (1990) 

[3] K Stokbro, D K Umberger and J A Hertz, Complex Systems 4 603-622 (1991) 

[4] S Wolfram, Theory and Applications of Cellular Automata (World Scientific, 
1986) 

[5] C G Langton, pp 12-37 in Emergent Computation (S Forrest, ed) MIT 
Press/North Holland, 1991 

[6] J K Anlauf and M Biehl, Europhys Letters 10 687 (1989) 

[7] H V Mcintosh, Physica D 45 105-121 (1990) 

[8] S Wolfram, Physic a D 10 1-35 (1984) 


