
Time Warping Invariant Neural Networks

Guo-Zheng Sun, Hsing-Hen Chen and Yee-Chun Lee
Institute for Advanced Computer Studies

and
Laboratory for Plasma Research,

University of Maryland
College Park, MD 20742

Abstract
We proposed a model of Time Warping Invariant Neural Networks (TWINN)

to handle the time warped continuous signals. Although TWINN is a simple modifica
tion of well known recurrent neural network, analysis has shown that TWINN com
pletely removes time warping and is able to handle difficult classification problem. It
is also shown that TWINN has certain advantages over the current available sequential
processing schemes: Dynamic Programming(DP)[I], Hidden Markov Model(
HMM)[2], Time Delayed Neural Networks(TDNN) [3] and Neural Network Finite
Automata(NNFA)[4].

We also analyzed the time continuity employed in TWINN and pointed out that
this kind of structure can memorize longer input history compared with Neural Net
work Finite Automata (NNFA). This may help to understand the well accepted fact
that for learning grammatical reference with NNF A one had to start with very short
strings in training set.

The numerical example we used is a trajectory classification problem. This
problem, making a feature of variable sampling rates, having internal states, continu
ous dynamics, heavily time-warped data and deformed phase space trajectories, is
shown to be difficult to other schemes. With TWINN this problem has been learned in
100 iterations. For benchmark we also trained the exact same problem with TDNN and
completely failed as expected.

I. INTRODUCTION
In dealing with the temporal pattern classification or recognition, time warping of input sig

nals is one of the difficult problems we often encounter. Although there are a number of
schemes available to handle time warping, e.g. Dynamic Programming (DP) and Hidden Mark
ov Model(HMM), these schemes also have their own shortcomings in certain aspects. More de
pressing is that, as far as we know, there are no efficient neural network schemes to handle time
warping. In this paper we proposed a model of Time Warping Invariant Neural Networks
(TWINN) as a solution. Although TWINN is only a simple modification to the well known neu
ral net structure, analysis shows that TWINN has the built-in ability to remove time warping
completely.

The basic idea ofTWINN is straightforward. If one plots the state trajectories of a continuous

180

Time Warping Invariant Neural Networks 181

dynamical system in its phase space, these trajectory curves are independent of time warping
because time warping can only change the time duration when traveling along these trajectories
and does not affect their shapes and structures. Therefore, if we normalize the time dependence
of the state variables with respect to any phase space variable, say the length of trajectory, the
neural network dynamics becomes time warping invariant.

To illustrate the power of the TWINN we tested it with a numerical example of trajectory
classification. This problem, chosen as a typical problem that the TWINN could handle, has the
following properties: (1). The input signals obey a continuous time dynamics and are sampled
with various sampling rates. (2). The dynamics of the de-warped signals has internal states. (3).
The temporal patterns consist of severely time warped signals.

To our knowledge there have not been any neural network schemes which can deal with this
case effectively. We tested it with TDNN and failed to learn.

In the next section we will introduce the TWINN and prove its time warping invariance. In
Section III we analyze its features and identify the advantages over other schemes. The numer
ical example of the trajectory classification with TWINN is presented in Section IV.

II. TIME WARPING INVARIANT NEURAL NETWORKS (TWINN)
To process temporal signals, we consider a fully recurrent network, which consists of two

groups of neurons: the state neurons (or recurrent units) represented by vector S(t) and the input
neurons that are clamped to the external input signals {I(t), t = 0, I, 2, , T-l). The Time
Warping Invariant Neural Networks (TWINN) is simply defined as:

S(t+ 1) = S(t) +1(t)F(S(t), W,/(t» (1)
where W is the weight matrix, [(t) is the distance between two consecutive input vectors defined
by the norm

l(t) = 11/(t+ 1) -/(t) II (2)
and the mapping function F is a nonlinear function usually referred as neural activity function.
For example of first order networks, it could take the form:

Fj(S(t), W,/(t» = Tanh(~Wij(S(t) EfH(t»)
J

(3)

where Tanh(x) is Hyperbolic Tangent function and symbol Ef> stands for the vector concatena
tion.

For the purpose of classification (or recognition), we assign the target final state Sk>
(k= 1,2,3, ... K), for each category of patterns. After we feed into the TWINN the whole sequence
{J(O), 1(1), 1(2), ,/(T-l)}, the state vector S(t) will reach the final state SeT). We then need to
compare S(n with the target final state Sk for each category k, (k=I,2,3, ... K), and calculate the
error:

(4)

The one with minimal error will be classified as such. The ideal error is zero.
For the purpose of training, we are given a set of training examples for each category. We

then minimize the error functions given by Eq. (4) using either back-propagation[7] or forward
propagation algorithm[8]. The training process can be terminated when the total error reach its
minimum.

The formula of TWINN as shown in Eq. (1) does not look like new. The subtle difference
from wildly used models is the introduction of normalization factor let) as in Eq. (1). The main
advantage by doing this lies in its built-in time warping ability. This can be directly seen from
its continuous version.

As Eq. (1) is the discrete implementation of continuous dynamics, we can easily convert it
into a continuous version by replacing "t +1" by "t+~t" and let ~t --? O. By doing so, we get

182 Sun, Chen, and Lee

. S(t+~t) -Set) dS
11m ------- -

61-.01l/(t+M) -/(t) II - dL
(5)

where L is the input trajectory length, which can be expressed as an integral
I

L (t) = III ~~II dt
o

(6)

or summation (as in discrete version)
I

L(t) = L II/(t+ 1) - ·/(t) II
1:=0

(7)

For deterministic dynamics, the distance L(t) is a single-valued function. Therefore, we can
make a unique mapping from t to L, TI: t --7 L, and any function of t can be transformed into a
function of L in terms of this mapping. For instance, the input trajectory I(t) and the state tra
jectory Set) can be transformed into I(L) and S(L). By doing so, discrete dynamics of Eq. (1)
becomes, in the continuous limit,

~~ = F (S (L), W, I (L)) (8)

It is obvious that there is no explicit time dependence in Eq. (8) and therefore the dynamics rep
resented by Eq. (8) is time warping independent.

To be more specific, if we draw the trajectory curves of l(t) and S(t) in their phase spaces re
spectively, these two curves would not be deformed if we only change the time duration when
traveling along the curves. Therefore, if we generate several input sequences {J(t)} using dif
ferent time warping functions and feed them into TWINN, represented by Eq. (8) or Eq. (1), the
induced state dynamics of S(L) would be the same. Meanwhile, the final state is the solo crite
rion for classification. Therefore, any time warped signals would be classified by the TWINN
as the same. This is the so called "time warping invariant".

III. ANALYSIS OF TWINN VS. OTHER SCHEMES
We emphasize two points in this section. First, we would analyze the advantages of the

TWINN over the other neural network structures, like TDNN, and other mature and well known
algorithms for time warping, such as HMM and Dynamics Programming. Second, we would an
alyze the memory capacity of input history for both the continuous dynamical networks as il
lustrated in Eq. (1) and its discrete companion, Neural Network Finite Automata used in
grammatical inference by Liu [3], Sun [4] and Giles [5]. And, we will show by mathematical
estimation that the continuity employed in TWINN increases the power of memorizing history
compared with NNFA

The Time Delayed Neural Networks (TDNN)[3] has been a useful neural network structure
in processing temporal signals and achieves successes in several applications, e.g. speech rec
ognition. The traditional neural network structures are either feedforward or recurrent. The
TDNN is something in between. The power of TDNN is in its dynamic combination of the spa
tial processing (as in a feedforward net) and sequential processing (as in a recurrent net with
short time memory). Therefore, the TDNN could detect the local features within each windowed
frame and store their voting scores into the short time memory neurons, and then make a final
decision at the end of input sequence. This technique is suitable for processing the temporal pat
terns where the classification is decided by the integration of local features. But, it could not
handle the long time correlation across time frames like a state machine. It also does not tolerate
time warping effectively. Each of time warped patterns will be treated as a new feature. There
forG, TDNN would not be able to handle the numerical example given in this paper which has
both the severe time warping and the internal states (long time correlation). The benchmark test
has been performed and it proved our prediction. Actually, it can be seen later that in our exam-

Time Warping Invariant Neural Networks 183

pIes, no matter which category they belong to, all windowed frames would contain similar local
features, the simple integration of local features do not contribute directly to the final classifi
cation, rather the whole sinal history will decide the classification.

As for the Dynamic Programming, it is to date the most efficient way to cope with time warp
ing problem. The most impressing feature of dynamic programming is that it accomplishes a
global search among all NN possible paths using only -0(N2) operations, where N is the length
of the input time series and, of course, one operation here represents all calculations involved
in evaluating the 'score" of one path. But, on the other hand this is not ideal. If we can do the
time warping using recurrent network, the number of uperations will be reduced to -O(N). This
is a dramatic saving. Another undesirable feature of current dynamic warping scheme is that the
recognition or classification result heavily depends on the pre-selected template and therefore
one may need a large number of templates for a better classification rate. By adding one or two
template we actually double or triple the number of operations. Therefore, search for a neural
network time warping scheme is a pressing task.

Another available technique for time warping is Hidden Markov Model (HMM), which has
been successfully applied in speech recognition. The way for HMM to deal with time warping
is in terms of statistical behavior of its hidden state transition. Starting from one state qj, HMM
allows a certain probability ~j to forward to another state qj. Therefore, for any given HMM one
could generate various state sequences, say, qlq2q2q3q4q4qS' QlQ2Q2Q2q3Q3q4q4qS' etc., each
with a certain occurrence probability. But, these state sequences are "hidden", the observed part
is a set of speech data or symbol represented by {Sk} for example. HMM also includes a set of
observation probability B=={bjk}, so that when it is in a certain state, say Qj' HMM allows each
symbol from the set {sk} to occur with the probability bjk. Therefore, for any state sequence one
can generate various series of symbols. As an example, let us consider one simple way to gen
erate symbols: in state Qj we generate symbol Sj (with probability bjj). By doing so, the two state
sequences mentioned above would correspond to two possible symbol sequences:
sl s2s2s3s4s4sS and sl s2s2s2s3s3s4S4sS' Examining the two strings closely, we find that the second
one may be considered as the time warped version of the first one, or vice versa. If we present
these two strings to the HMM for testing, it will accept them with similar probabilities. This is
the way that HMM tolerates time warping. And, these state transition probabilities of HMM are
learned from the statistics of training set by using re-estimation formula. In this sense, HMM
does not deal with time warping directly, instead, it learns statistical distribution of training set
which contains time warped patterns. Consequently, if one presents a test pattern with time
warped signals which is far away from the statistical distribution of training set, it is very un
likely for a HMM to recognize this pattern.

On the contrary, the model of TWINN we proposed here has intrinsic built-in time warping
nature. Although the TWINN itself has internal states, these internal states are not used for tol
erating time warping. Instead, they are used to learn more complex behavior of the "de-warped"
trajectories. In this sense, TWINN could be more powerful than HMM.

Another feature ofTWINN needs be mention is its explicit expression of continuous mapping
from S(t) to S(t+1) as shown in Eq. (1). In our early work of [4,5,6], to train a NNFA (Neural
Network Finite Automaton), we used a discrete mapping

S(t+ 1) = F(S(t), W,/(t» (9)

where F is a nonlinear function, say Sigmoid function g(x) == 1 l(l+e' X). This model has been
successfully applied into the grammatical inference. The reason we call Eq. (1) a continuous
mapping but Eq. (9) a discrete one, even though both of them are implemented in discrete time
steps, is because there is an explicit infinitesimal factor let) used in Eq. (1). Due to this factor
the continuous state dynamics is guaranteed, by which we mean that the state variation S(t+ I)
- S(t+1) approaches zero if the input variation 1(t+l) -1{t+I) does so. But, In general, the state

184 Sun, Chen, and Lee

variation S(t+ 1) - S(t+ 1) generated by Eq. (9) is of order of one, regardless of what input varia
tions are. If one starts from random initial weights, Eq. (9) provides a discrete jump between
different, randomly distributed states, which is far away from any continuous dynamics.

We did numerical test using NNFA of Eq. (9) to learn the classification problem of continu
ous trajectories as shown in Section V. For simplicity we did not include time warping, but the
NNFA still failed to learn. The reason is that when we tried to train a NNF A to learning the con
tinuous dynamics, we were actually forcing the weights to generate an almost identical mapping
F from Set) to S(t+ 1). This is a very strong constrain on the weight parameters, such that it
drives the diagonal terms to positive infinity and off-diagonal terms to negative infinity (Sig
moid function is used). When this happens, the learning is stuck due to the saturation effect.

The failure of NNF A may also comes from the short history memory capacity compared to
the continuous mapping ofEq. (1). It has been shown by many numerical experiments on gram
matical inference [3,4,5] that to train an NNFA as in Eq. (9) effectively, one has to start with
short training patterns (usually, the sentence length ~ 4). Otherwise, learning will fail or be very
slow. This is exactly what happened to learning the trajectory classification using NNFA, where
the lengths of our training patterns are in general considerably long (normally,- 60). But,
TWINN learned it easily. To understand the NNFA's failure and TWINN's success, in the fol
lowing, we will analyze how the history information enters the learning process.

Consider the example of learning grammatical inference. Before training since we have no (I

priori knowledge about the target values of weights, we normally start with random initial val
ues. On the other hand, during training the credit assignment (or the weight correction ~ W) can
only be done at the end of each input sequence. Consequently, each ~W should explicitly con
tain the information about all symbols contained in that string, otherwise the learning is mean
ingless. But, in numerical implementation, every variable, including both ~W and W, has a
finite precision and any information beyond the precision range will be lost. Therefore, to com
pare which model has the longer history memory we need to examine how the history informa
tion relates to the finite precisions of ~ Wand W.

Let us illustrate this point with a simple second-order connected fully recurrent network and
write both Eq. (1) and Eq. (9) in a unified form

S(t+l) =G,+l (10)
such that Eq. (1) is represented by

G' + I = S (1) + I (1) g (K (1)) (11)
and Eq. (9) is just

G,+l = g(K(t)) (12)
where K(t) is the weighted sum of concatenation of vectors Set) and /(t)

Kj(t) = LWjj(S(t) EfH(t»j (13)
j

For a grammatical inference problem the error is calculated from the final state S(I) as

E= (S(T)-Starget)2 (14)

Learning is to minimize this error function. According to the standard error back-propagation
scheme, the recurrent net can be viewed as a multi-layered net with identical weights between
neurons at adjacent time step: w(t) = W, where w(t) is the "till layer" weights connecting input
S(t-I) to output S(t). The total weight correction is the summation of all weight corrections at
each layer. By using the gradient descent scheme one immediately has

T T a E T aE aGI

~W= LOW(t) =-llLaW(t) =-llL aS(t) · aW(t) (15)
1=1 1=1 1=1

If we define new symbols: vector u(t), second-order tensor A(t) and third-order tensor B(t) as

Time Warping Invariant Neural Networks 185

the weight correction can be simply written as
T

a G~+ I
A .. (t) == a I

IJ S.(t)
J

(16)

~W=-1\~U(t).B(t) (17)

and the "error rate" u(t) can be back-propagated using the Derivative Chain Rule

u (t) = u (t + 1) . A (t) t = 1, 2, ... , T - 1 ; (18)

so that it is easy to have

u(t) = u(n ·A(T-I) · A(T-2) · ... ·A(t) ==u(n'tJ~t~(t) t = 1,2, ... ,T-I; (19)

First, let us examine the model ofNNFA in Eq. (9). Using Eqs. (12), (13) and (16), Ai/t) and
Bijk(t) can be written as

A .. (t) = g' (K. (t)) W ..
lj I ~

B··k(f) = a .. (S(t-I) El)/(t-I»k
IJ IJ

(20)

where g'(x) == dg/dx = gO-g) is the derivative of Sigmoid function and 8ij is Kronecker delta
function. If we substitute Bijk(t) into Eq. (17), ~Wbecomes a weighted sum of all input symbols
{/(O), 1(1), 1(2), J(T-I)}, each with different weighting factor u(t). Therefore, to guarantee
that ~ W contain the information of all input symbols {/(O), 1(1), 1(2), J(T-I)}, the ratio of
lu(t)lmaxllu(t)lmin should be within the range of precision of ~W. This is the main point.

The exact mathematical analysis has not been done, but from a rough estimate we can gain
some good understanding. From Eq. (9), u(t) is a matrices product of Aij(t), and u(1) the coef-
ficient of 1(0) contains the highest order product of Ai/t). The key point is that the coefficient
ratio between the adjacent symbols: lu(t)"lu(t+l) is of the order of lAi/t)I, which is a small val
ue, therefore the earlier symbol information could be lost from ~ W due to its finite precision. It
can be shown that xg'(x) =x g(x)(l-g(x)< 0.25 for any real value of x. Then, we roughly have
lAij(t)1 = Ig' Wijl = Ig(l-g)Wij 1< 0.25, if we assume the values of weights Wij to be order 1. Thus,
the ratio R=lu(t)lmax"u(t)lmin is estimated as

1
R- IU(1)l/lu(nl-"p_

1
IA(f')1 <2-2. (T-l) (21)

From Eq. (21) we see that if the input pattern length is T= lOwe need at least 2(T -1) == 18 bits
computer memory to store weight variables (including u, W and ~ W). If T= 60, as in the trajec
tory classification problem, it requires at least 128 bit weight variables. This is why the NNFA
Eq. (9) could not work.

Similarly, for the dynamics of Eq. 0), we use Eqs. (11), (13) and (16), and obtain

Aij(l) = 1+1(t) (g'(Kj(t»Wi} Bijk(l) = 1(1) (aij(S(t-l) GH(t-l»k) (22)

From Eq. (22) we see that no matter how small the factor let) will be, lAi/!)1 remains a value
of order of one, therefore the ratio R=lu(t)lmax"u(t)lmin which is estimated as a product of lAij(1)1
would be of order of one compared with result of discrete case as in Eq. (21).Therefore, the con-
tributions from all {I(O), 1(1), 1(2), J(T-I)} to the weight correction ~ Ware of the same or-
der. This prevents the information loss during learning.

IV NUMERICAL SIMULATION
We demonstrate the power of TWINN with a trajectory classification problem. The three 2-

186 Sun, Chen, and Lee

D trajectory equations are artificially given by
(xCt) =sin(t+~)lsinCt)1 (xCt) =sin(O.5t+~)sin(1.5t) (xU) =sinU+~)sin(2t) (23)
\y (t) = cos (t+~) I sin (t) I \y (t) = cos (O.5t +~) sin (1.5t) ~ (1) = cos (t +~) sin (2t)

where ~ is a unifonnly distributed random parameter. When ~ is changed, these trajectories are
distorted accordingly. Some examples (three for each class) are shown in Fig. I.

Class 1 Class 2 Class 3

- -G .7 !. -0.5 -

Fig.l PHASE SPACE TRAJECTORIES

Three different shapes of 2-D trajecwry, each is shown in one column with three examples.

Recurrent neural networks are trained to recognize the different shapes of trajectory.

The trajectory data are the time series of two dimensional coordinate pairs {x(t), y(t)} sampled
along three different types of curves in the phase space. The neural net dynamics of TWINN is

(24)

where we used 6 input neurons I = {I, x(t), y(t), .?(t), y2(t), x(t)y(t)} (normalized to norm = 1.0)
and 4 (N=4) state neurons S ={ Sl' S2' S3' S4}. The neural network structure is shown in Fig. 2.

Fig.2 Time Warping Invariant Neural Network
for Trajectory Classification Fig.3 Time Delayed Neural Network

for Trajectory ClassificatiolJ

For training, we assign the desired final output for the three trajectory classes to be (1,0,0),

Time Warping Invariant Neural Networks 187

(0,1,0) and (0,0,1) respectively. For recognition, each trajectory data sequence needs to be fed
to the input neurons and the state neurons evolve according to the dynamics in Eq. (24). At the
end of input series we check the last three state neurons and classify the input trajectory accord
ing to the "winner-take-all" rule.

In each iteration of training we randomly picked up 150 deformed trajectories, 50 for each of
the three categories, by choosing different values of ~ within O$~ $27t. To simulate time warp
ing we randomly sampled the data by choosing the random time step ~t = 27trff along each tra
jectory, where r is a random number between 0 and 2 and the sampling rate T=60 for training
patterns, and T=20 to 200 for testing patterns. Therefore, each training pattern is a time warped
trajectory data with averaged length = 60. Using RTRL algorithm[8] to minimize the error func
tion, after 100 iterations of training it converged to Mean Square Error of == 0.03.

We tested the trained network with hundreds of randomly picked input sequences with differ
ent sampling rate (from 20/27t to 200127t) and different wrapping functions (non-uniform step
length). All input trajectories are classified correctly. If the sampling rates are too large (>200)
or too small(<20), some classification errors will occur.

We test the same example with TDNN. See Fig.3 for its parameters. The top layer contains
three output neurons for the three classes of trajectories. The classification rules, error function
and training patterns are the same as those ofTWINN. After three days of training with DEC-
3100 Workstation the training error (MSE) approaches 0.5 and in testing the error rate is 70%.

V. CONCLUSION
We have proposed a model of Time Warping Invariant Neural Network to handle temporal

pattern classification where the severely time warped and deformed data may occur. This model
is shown to have built-in time warping ability. We have analyzed the properties ofTWINN and
shown that for trajectory classification it has several advantages over other schemes: HMM, DP,
TDNN and NNFA.

We also numerically implemented the TWINN and trained a trajectory classification easily.
This problem is shown by analysis to be difficult to other schemes. It has been trained with
TDNN but failed.

References
[1] H.Sakoe and S. Chiba, "Dynamic Programming Algorithm Optimization for Spoken

Word Recognition", IEEE Transactions on Acoustics Speech and Signal Processing, Vol.
ASSP-26, pp.43-49, Feb. 1978.

[2] L.R.Rabiner and B.H.Juang, "An Introduction to Hidden Markov Models", IEEE, ASSP
Mag., Vol.3, No.1, pp. 4-16, 1986.

[3]A. Weibel, T. Hanazawa, G. Hinton, K.shikano and K. Lang, "Phoneme Recognition Us
ing Time-Delay Neural Networks", IEEE Transactions on Acoustics Speech and Signal Pro
cessing, March, 1989.

[4]. Y.D. Liu, G.Z. Sun, H.H. Chen, c.L. Giles and Y.c. Lee, "Grammatic Inference and
Neural Network State Machine", Proceedings of the International Joint Conference on Neural
Networks, pp. 1-285, Washington D.C. (1990).

[5]. G.Z. Sun, H.H. Chen, c.L. Giles, Y.c. Lee and D. Chen, "Connectionist Pushdown Au
tomata that Learn Context-Free Grammars", Proceedings of the International Joint Conference
on Neural networks, pp. 1-577, Washington D.C. (1990).

[6]Giles, C.L., Sun, G.Z., Chen, H.H., Lee,Y.C., and Chen, D. (1990). "Higher Order Recur
rent Networks & Grammatical Inference". Advances in Neurallnformation Processing Systems
2, D.S. Touretzky (editor), 380-386, Morgan Kaufmann, San Mateo, c.A. (7)

[7] D.Rumelhart, G. Hinton, and R. Williams. "Learning internal representations by error
propagation", In PDP: VoU MIT press 1986. P. Werbos, "Beyond Regression: New tools for
prediction and analysis in the behavior sciences", Ph.D. thesis, Harvard university, 1974.

[8] R. Williams and D. Zipser, "A learning algorithm for continually running fully recurrent
neural networks", Neural Computation 1 (1989), pp.270-280.

