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Abstract 

"Trajectory Extension Learning" is a new technique for Learning 
Control in Robots which assumes that there exists some parameter 
of the desired trajectory that can be smoothly varied from a region 
of easy solvability of the dynamics to a region of desired behavior 
which may have more difficult dynamics. By gradually varying the 
parameter, practice movements remain near the desired path while 
a Neural Network learns to approximate the inverse dynamics. For 
example, the average speed of motion might be varied, and the in­
verse dynamics can be "bootstrapped" from slow movements with 
simpler dynamics to fast movements. This provides an example of 
the more general concept of a "Practice Strategy" in which a se­
quence of intermediate tasks is used to simplify learning a complex 
task. I show an example of the application of this idea to a real 
2-joint direct drive robot arm. 

1 INTRODUCTION 

The most general definition of Adaptive Control is one which includes any controller 
whose behavior changes in response to the controlled system's behavior. In practice, 
this definition is usually restricted to modifying a small number of controller pa­
rameters in order to maintain system stability or global asymptotic stability of the 
errors during execution of a single trajectory (Sastry and Bodson 1989, for review). 
Learning Control represents a second level of operation, since it uses Adaptive Con-
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trol to modify parameters during repeated performance trials of a desired trajectory 
so that future trials result in greater accuracy (Arimoto et al. 1984). In this paper 
I present a third level called a "Practice Strategy", in which Learning Control is 
applied to a sequence of intermediate trajectories leading ultimately to the true 
desired trajectory. I claim that this can significantly increase learning speed and 
make learning possible for systems which would otherwise become unstable. 

1.1 LEARNING CONTROL 

During repeated practice of a single desired trajectory, the actual trajectory followed 
by the robot may be significantly different. Many Learning Control algorithms 
modify the commands stored in a sequence memory to minimize this difference 
(Atkeson 1989, for review). However, the performance errors are usually measured 
in a sensory coordinate system, while command corrections must be made in the 
motor coordinate system. If the relationship between these two coordinate sys­
tems is not known, then command corrections might be in the wrong direction and 
inadvertently worsen performance. However, if the practice trajectory is close to 
the desired trajectory, then the errors will be small and the relationship between 
command and sensory errors can be approximated by the system Jacobian. 

An alternative to a stored command sequence is to use a Neural Network to learn an 
approximation to the inverse dynamics in the region of interest (Sanner and Slotine 
1992, Yabuta and Yamada 1991, Atkeson 1989). In this case, the commands and 
results from the actual movement are used as training data for the network, and 
smoothness properties are assumed such that the error on the desired trajectory 
will decrease. However, a significant problem with this method is that if the actual 
practice trajectory is far from the desired trajectory, then its inverse dynamics 
information will be of little use in training the inverse dynamics for the desired 
trajectory. In fact, the network may achieve perfect approximation on the actual 
trajectory while still making significant errors on the desired trajectory. In this 
case, learning will stop (since the training error is zero) leading to the phenomenon 
of "learning lock-up" (An et al. 1988). So whether Learning Control uses a sequence 
memory or a Neural Network, learning may proceed poorly if large errors are made 
during the initial practice movements. 

1.2 PRACTICE STRATEGIES 

I define a "practice strategy" as a sequence of trajectories such that the first element 
in the sequence is any previously learned trajectory, and the last element in the 
sequence is the ultimate desired trajectory. A well designed practice strategy will 
result in a seqence for which learning control of the trajectory for any particular step 
is simplified if prior steps have already been learned. This will occur if learning of 
prior trajectories reduces the initial performance error for subsequent trajectories, 
so that a network will be less likely to experience learning lock-up. 

One example of a practice strategy is a three-step sequence in which the interme­
diate step is a set of independently executable subtasks which partition the desired 
trajectory into discrete pieces. Another example is a multi-step sequence in which 
intermediate steps are a set of trajectories which are somehow related to the de­
sired trajectory. In this paper I present a multi-step sequence which gradually 
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Figure 1: Training signals for network learning. 

transforms some known trajectory into the desired trajectory by varying a single 
parameter. This method has the advantage of not requiring detailed knowledge of 
the task structure in order to break it up into meaningful subtasks, and conditions 
for convergence can be stated explicitly. It has a close relationship to Continuation 
Methods for solving differential equations, and can be considered to be a particular 
application of the Banach Extension Theorem. 

2 METHODS 

As in (Sanger 1992), we need to specify 4 aspects of the use of a neural network 
within a control system: 

1. the networks' function in the control system, 

2. the network learning algorithm which modifies the connection weights, 

3. the training signals used for network learning, and 

4. the practice strategy used to generate sample movements. 

The network's function is to learn the inverse dynamics of an equilibrium-point con­
trolled plant (Shadmehr 1990). The LMS-tree learning algorithm trains the network 
(Sanger 1991b, Sanger 1991a). The training signals are determined from the ac­
tual practice data using either "Actual Trajectory Training" or "Desired Trajectory 
Training", as defined below. And the practice strategy is "Trajectory Extension 
Learning", in which a parameter of the movement is gradually modified during 
training. 
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2.1 TRAINING SIGNALS 

Figure 1 shows the general structure of the network and training signals. A desired 
trajectory y is fed into the network N to yield an estimated command U. This 
command is then applied to the plant Pcx where the subscript indicates that the 
plant is parameterized by the variable a. Although the true command u which 
achieves y is unknown, we do know that the estimated command u produces y, so 
these signals are used for training by comparing the network response to y given by 
~ = Ny to the known value u and subtracting these to yield the training error 6,. 

Normally, network training would use this error signal to modify the network output 
for inputs near y, and I refer to this as "Actual Trajectory Training". However, if 
y is far from y then no change in response may occur at y and this may lead even 
more quickly to learning lock-up. Therefore an alternative is to use the error 6fJ to 
train the network output for inputs near y. I refer to this as "Desired Trajectory 
Training", and in the figure it is represented by the dotted arrow. 

The following discussion will summarize the convergence conditions and theorems 
presented in (Sanger 1992). 

Define 
Ru . (1 - N P(x))u = u - U 

to be an operator which maps commands into command errors for states x on the 
desired trajectory. Similarly, let 

Ru = (1 - N P( x))u = u - ~ 

map commands into command errors for states x on the actual trajectory. 

Convergence depends upon the following assumptions: 

A1: The plant P is smooth and invertible with respect to both the state x and the 
input u with Lipschitz constants k'z; and ku, and it has stable zero-dynamics. 

A2: The network N is smooth with Lipschitz constant kN. 
A3: Network learning reduces the error in response to a pair (y, 6y ). 

A4: The change in network output in response to training is smooth with Lipschitz 
constant kL. 

A5: There exists a smoothly controllable parameter a such that an inverse dy­
namics solution is available at a = ao, and the desired performance occurs 
when a = ad. 

A6: The change in command required to produce a desired output after any change 
in a is bounded by the change in a multiplied by a constant kcx • 

A 7: The change in plant response for any fixed input is bounded by the change in 
a multiplied by a constant kp • 

Under assumptions A1-A3 we can prove convergence of Desired Trajectory Training: 

Theorem 1: 
If there exists a k Rn such that 

II Rnu - Rnull < kRn lI u - ull 
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then if the learning rate 0 < 'Y :::; 1, 

If k Rn < 1 and 'Y :::; 1, then the network output u approaches the correct command 
u. 

Under assumptions A1-A4, we can prove convergence of Actual Trajectory Training: 

Theorem 2: 
If there exists a kRn such that 

IIRn u - Rnull < kRn lIu - illl 
then if the learning rate 0 < 'Y :::; 1, 

2.2 TRAJECTORY EXTENSION LEARNING 

Let a be some modifiable parameter of the plant such that for a = ao there exists 
a simple inverse dynamics solution, and we seek a solution when a = ad. For ex­
ample, if the plant uses Equilibrium Point Control (Shadmehr 1990), then at low 
speeds the inverse dynamics behave like a perfect servo controller yielding desired 
trajectories without the need to solve the dynamics. We can continue to train a 
learning controller as the average speed of movement (a) is gradually increased. 
The inverse dynamics learned at one speed provide an approximation to the inverse 
dynamics for a slightly faster speed, and thus the performance errors remain small 
during practice. This leads to significantly faster learning rates and greater likeli­
hood that the conditions for convergence at any given speed will be satisfied. Note 
that unlike traditional learning schemes, the error does not decrease monotonically 
with practice, but instead maintains a steady magnitude as the speed increases, 
until the network is no longer able to approximate the inverse dynamics. 

The following is a summary of a result from (Sanger 1992). Let a change from al 

to a2, and let P = Pal and P' = Pa2 . Then under assumptions AI-A7 we can 
prove convergence of Trajectory Extension Learning: 

Theorem 3: 
If there exists a kR such that for a = al 

then for a = a2 

IIR'u' - R'illl < kRllu' - ull + (2ka + kNkp)la2 - all 

This shows that given the smoothness assumptions and a small enough change in 
a, the error will continue to decrease. 
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3 EXAMPLE 

Figure 2 shows the result of 15 learning trials performed by a real direct-drive two­
joint robot arm on a sampled desired trajectory. The initial trial required 11.5 
seconds to execute, and the speed was gradually increased until the final trial re­
quired only 4.5 seconds. Simulated equilibrium point control was used (Bizzi et 
al. 1984) with stiffness and damping coefficients of 15 nm/rad and 1.5 nm/rad/sec, 
respectively. The grey line in figure 2 shows the equilibrium point control signal 
which generated the actual movement represented by the solid line. The difference 
between these two indicates the nontrivial nature of the dynamics calculations re­
quired to derive the control signal from the desired trajectory. Note that without 
Trajectory Extension Learning, the network does not converge and the arm becomes 
unstable. The neural network was an LMS tree (Sanger 1991b, Sanger 1991a) with 
10 Gaussian basis functions for each of the 6 input dimensions, and a total of 15 
subtrees were grown per joint (see (Sanger 1992) for further explanation). 

4 CONCLUSION 

Trajectory Extension Learning is one example of the way in which a practice strat­
egy can be used to improve convergence for Learning Control. This or other types 
of practice strategies might be able to increase the performance of many different 
types of learning algorithms both within and outside the Control domain. Such 
strategies may also provide a theoretical model for the practice strategies used by 
humans to learn complex tasks, and the theoretical analysis and convergence con­
ditions could potentially lead to a deeper understanding of human motor learning 
and successful techniques for optimizing performance. 
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