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Abstract 

How can artificial neural nets generalize better from fewer examples? In order 
to generalize successfully, neural network learning methods typically require 
large training data sets. We introduce a neural network learning method that 
generalizes rationally from many fewer data points, relying instead on prior 
knowledge encoded in previously learned neural networks. For example, in robot 
control learning tasks reported here, previously learned networks that model the 
effects of robot actions are used to guide subsequent learning of robot control 
functions. For each observed training example of the target function (e.g. the 
robot control policy), the learner explains the observed example in terms of its 
prior knowledge, then analyzes this explanation to infer additional information 
about the shape, or slope, of the target function. This shape knowledge is used 
to bias generalization when learning the target function. Results are presented 
applying this approach to a simulated robot task based on reinforcement learning. 

1 Introduction 

Neural network learning methods generalize from observed training data to new cases based 
on an inductive bias that is similar to smoothly interpolating between observed training 
points. Theoretical results [Valiant, 1984], [Baum and Haussler, 1989] on learnability, as 
well as practical experience, show that such purely inductive methods require significantly 
larger training data sets to learn functions of increasing complexity. This paper introduces 
explanation-based neural network learning (EBNN), a method that generalizes successfully 
from fewer training examples, relying instead on prior knowledge encoded in previously 
learned neural networks. 

EBNN is a neural network analogue to symbolic explanation-based learning methods (EBL) 
[DeJong and Mooney, 1986], [Mitchell et al., 19861 Symbolic EBL methods generalize 
based upon pre-specified domain knowledge represented by collections of symbolic rules. 
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For example. in the task of learning general rules for robot control EBL can use prior 
know ledge about the effects of robot actions to analytically generalize from specific training 
examples of successful control actions. This is achieved by a. observing a sequence of states 
and actions leading to some goal. b. explaining (i.e .• post-facto predicting) the outcome 
of this sequence using the domain theory. then c. analyzing this explanation in order 
to determine which features of the initial state are relevant to achieving the goal of the 
sequence. and which are nol In previous approaches to EBL. the initial domain knowledge 
has been represented symbolically. typically by propositional rules or hom clauses. and has 
typically been assumed to be complete and correct 

2 EBNN: Integrating inductive and analytical learning 

EBNN extends explanation-based learning to cover situations in which prior knowledge 
(also called the domain theory) is approximate and is itself1earned from scratch. In EBNN, 
this domain theory is represented by real-valued neural networks. By using neural network 
representations. it becomes possible to learn the domain theory using training algorithms 
such as the Backpropagation algorithm [Rumelhart et al., 19861 In the robot domains 
addressed in this paper. such domain theory networks correspond to action models. i.e., 
networks that model the effect of actions on the state of the world M:s x a -+ Sf (here 
a denotes an action, s a state. and Sf the successor state). This domain theory is used by 
EBNN to bias the learning of the 'robot control function. Because the action models may be 
only approximately correct. we require that EBNN be robust with respect to severe errors 
in the domain theory. 

The remainder of this section describes the EBNN learning algorithm. Assume that the 
robot agent's action space is discrete. and that its domain knowledge is represented by a 
collection of pre-trained action models Mi:S -+ Sf. one for each discrete action i. The 
learning task of the robot is to learn a policy for action selection that maximizes the reward, 
denoted by R. which defines the task. More specifically. the agent has to learn an evaluation 
function Q(s, a). which measures the cumulativefuture expected reward when action a is 
executed at state s. Once learned. the function Q(s, a) allows the agent to select actions 
that maximize the reward R (greedy policy). Hence learning control reduces to learning 
the evaluation function Q.1 

How can the agent use its previously learned action models to focus its learning of Q? 
To illustrate. consider the episode shown in Figure 1. The EBNN learning algorithm for 
learning the target function Q consists of two components, an inductive learning component 
and an analytical learning component. 

2.1 The inductive component of EBNN 

The observed episode is used by the agent to construct training examples, denoted by Q, 
for the evaluation function Q: 

Q(sl,ad:= R Q(s2,a2):= R Q(s3,a3):= R 
Q could for example be realized by a monolithic neural network, or by a collection of net
works trained with the Backpropagation training procedure. As observed training episodes 
are accumulated, Q will become increasingly accurate. Such pure inductive learning typ-

IThis approach to learning a policy is adopted from recent research on reinforcenuml learning 
[Barto et al., 1991]. 
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_-----~~ reward: R 
(goal state) 

Figure 1: Episode: Starting with the initial state SI. the action sequence aI, az, a3 was observed to 
produce the final reward R. The domain knowledge represented by neural network action models is 
used to post-facto predict and analyze each step of the observed episode. 

ically requires large amounts of training data (which will be costly in the case of robot 
learning). 

2.2 The analytical component or EBNN 

In EBNN, the agent exploits its domain lrnowledge to extract additional shape lrnowledge 
about the target function Q. to speed convexgence and reduce the number of training 
examples required. This shape lrnowledge. represented by the estimated slope of the target 
function Q. is then used to guide the generalization process. More specifically. EBNN 
combines the above inductive learning component with an analytical learning component 
that performs the following three steps for each observed training episode: 

1. Explain: Post-facto predict the obsexved episode (states and final reward), using the 
action models Mi (c.f. Fig. 1). Note that thexe may be a deviation between predicted 
and observed states. since the domain lrnowledge is only approximately correct. 

2. Analyze: Analyze the explanation to estimate the slope of the target function for 
each observed state-action pair (81:, a1:) (k = 1..3). i.e .• extract the derivative of the 
final reward R with respect to the features of the states 81:. according to the action 
models Mi. For instance. consider the explanation of the episode shown in Fig. 1. 
The domain theory networks Mi represent differentiable functions. Therefore it is 
possible to extract the derivative of the final reward R with respect to the preceding 
state 83. denoted by "V '3R. Using the chain rule of differentiation. the derivatives of 
the final reward R with respect to all states 81: can be extracted. These derivatives 
"V,,, R describe the dependence of the final reward upon features of the previous states. -They provide the target slopes. denoted by "V,,, Q. for the target function Q: 

- ( 8M43 (S3) 
"V '3 Q 83, a3) "V '3 R 0 

83 

oM4,(83) OM42 (82) 
OS3 082 "V'2 R 

OM43 (83) 8M42 (82) 8M41 (81) 
883 082 881 

3. Learn: Update the learned target function to better fit both the target values and target 
slopes. Fig. 2 illustrates training information extracted by both the inductive (values) 
and the analytical (slopes) components ofEBNN. Assume that the "true" Q-function 
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Figure2: Fitting slopes: Let/bea target function for which tbreeexampies (Xl, I(xt)}. (X2, I(X2)). 
and (X3, 1 (X3)) are known. Based on these points the learner might generate the hypothesis g. If the 
slopes are also known. the learner can do much better: h. 

is shown in Fig. 2a, and that three training instances at Xl, X2 and X3 are given. When 
only values are used for learning, i.e., as in standard inductive learning, the learner 
might conclude the hypothesis g depicted in Fig. 2b. If the slopes are known as well, 
the learner can better estimate the target function (Fig. 2c). From this example it is 
clear that the analysis in EBNN may reduce the need for training data, provided that 
the estimated slopes extracted from the explanations are sufficiently accurate. 
In EBNN, the function Q is learned by a real-valued function approximator that fits both 
the target values and target slopes. If this approximator is a neural network, an extended 
version of the Backpropagation algorithm can be employed to fit these slope constraints 
as well, as originally shown by [Simard et al., 19921 Their algorithm "Tangent Prop" 
extends the Backpropagation error function by a second term measuring the mean 
square error of the slopes. Gradient descent in slope space is then combined with 
Backpropagation to minimize both error functions. In the experiments reported here, 
however, we used an instance-based function approximation technique described in 
Sect. 3. 

2.3 Accommodating imperfect domain theories 

Notice that the slopes extracted from explanations will be only approximately correct, since 
they are derived from the approximate action models Mi. If this domain knowledge is 
weak, the slopes can be arbitrarily poor, which may mislead generalization. 
EBNN reduces this undesired effect by estimating the accuracy of the extracted slopes 
and weighting the analytical component of learning by these estimated slope accuracies. 
Generally speaking, the accuracy of slopes is estimated by the prediction accuracy of the 
explanation (this heuristic has been named LOB *). More specifically, each time the domain 
theory is used to post-facto predict a state sk+1, its prediction st~icted may deviate from the 
observed state sr+ied • Hence the I-step prediction accuracy at state Sk, denoted by Cl (i), 
is defined as 1 minus the normalized prediction error: 

( .) 1 _ II st~cted - skb+red II 
Cl Z := 

max..prediction...error 

For a given episode we define the n-step accuracy cn(i) as the product of the I-step 
accuracies in the next n steps. The n-step accuracy, which measures the accuracy of the 
deri ved slopes n steps away from the end of the episode, posseses three desireable properties: 
a. It is I if the learned domain theory is perfectly correct, b. it decreases monotonically as 
the length of the chain of inferences increases, and c. it is bounded below by O. The n-step 
accuracy is used to determine the ratio with which the analytical and inductive components 
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are weighted when learning the target concept. If an observation is n steps away from the 
end of the episode. the analytically derived training information (slopes) is weighted by 
the n-step accuracy times the weight of the inductive component (values). Although the 
experimental results reported in section 3 are promising. the generality of this approach is 
an open question. due to the heuristic nature of the assumption LOB *. 

2.4 EBNN and Reinforcement Learning 

To make EBNN applicable to robot learning, we extend it here to a more sophisticated 
scheme for learning the evaluation function Q. namely Watkins' Q-Learning [Watkins, 
1989] combined with Sutton's temporal difference methods [Sutton, 19881 The reason 
for doing so is the problem 0/ suboptimal action choices in robot learning: Robots must 
explore their environment. i.e., they must select non-optimal actions. Such non-optimal 
actions can have a negative impact on the final reward of an episode which results in both 
underestimating target values and misleading slope estimates. 

Watkins' Q-Learning [Watkins, 1989] permits non-optimal actions during the course of 
learning Q. In his algorithm targets for Q are constructed recursively, based on the 
maximum possible Q-value at the next state:2 

...... { R if k is the final step and R final reward 
Q(Sk, ak) = , m~ Q(Sk+l, a) otherwise 

a acuon 

Here , (O~,~I) is a discount/actor that discounts reward over time, which is commonly 
used for minimizing the number of actions. Sutton's TD(A) [Sutton, 1988] can be used to 
combine both Watkins' Q-Learning and the non-recursive Q-estimation scheme underlying 
the previous section. Here the parameter A (0 ~ A ~ 1) determines the ratio between recursive 
and non-recursive components: 

...... { R if k final step ) 
Q(sk,ak) = (I-A),maxa Q(sk+l,a) + A,Q(sk+l,ak+d otherwise (1 

Eq. (1) describes the extended inductive component of the EBNN learning algoriLhm. The 
extension of the analytical component in EBNN is straightforward. Slopes are extracted 
via the derivative of Eq. (1), which is computed via the derivative of both the models !IIi 
and the derivative of Q. 

if k last step 

otherwise 

3 Experimental results 

EBNN has been evaluated in a simulated robot navigation domain. The world and the 
action space are depicted in Fig. 3a&b. The learning task is to find a Q function, for which 
the greedy policy navigates the agent to its goal location (circle) from arbitrary starting 
locations, while avoiding collisions with the walls or the obstacle (square). States are 

210 order to simplify the notation. we assume that reward is only received at the end of the episode, 
and is also modeled by the action models. The extension to more general cases is straightforward. 
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Figure 3: a. The simulated robot world. b. Actions. c. The squared generalization error of the 
domain theory networks decreases monotonically as the amount of training data increases. These 
nine alternative domain theories were used in the experiments. 

described by the local view of the agent. in terms of distances and angles to the center of 
the goal and to the center of the obstacle. Note that the world is deterministic in these 
experiments, and that there is no sensor noise. 

We applied Watkins' Q-Learning and TD(~) as described in the previous section with 
A=0.7 and a discount factor ;=0.8. Each of the five actions was modeled by a separate 
neural network (12 hidden units) and each had a separate Q evaluation function. The 
latter functions were represented by a instance-based local approximation technique. In a 
nutshell, this technique memorizes all training instances and their slopes explicitly, and fits 
a local quadratic model over the [=3 nearest neighbors to the query point, fitting both target 
values and target slopes. We found empirically that this technique outperformed Tangent 
Prop in the domain at hand.3 We also applied an experience replay technique proposed by 
Lin [Lin, 19911 in order to optimally exploit the information given by the observed training 
episodes. 

Fig. 4 shows average performance curves for EBNN using nine different domain theories 
(action models) trained to different accuracies, with (Fig. 4a) and without (Fig. 4b) taking 
the n-step accuracy of the slopes into account. Fig. 4a shows the main result. It shows 
clearly that (1) EBNN outperfonns purely inductive learning, (2) more accurate domain 
theories yield better performance than less accurate theories, and (3) EBNN learning de
grades gracefully as the accuracy of the domain theory decreases, eventually matching the 
performance of purely inductive learning. In the limit, as the size of the training data set 
grows, we expect all methods to converge to the same asymptotic performance. 

4 Conclusion 

Explanation-based neural network learning. compared to purely inductive learning, gen
eralizes more accurately from less training data. It replaces the need for large training 
data sets by relying instead on a previously learned domain theory. represented by neural 
networks. In this paper, EBNN has been described and evaluated in terms of robot learning 
tasks. Because the learned action models Mi are independent of the particular control task 
(reward function), this knowledge acquired during one task transfers directly to other tasks. 

3Note that in a second experiment not reported here, we applied EBNN using neural network 
representation for Q and Tangent Prop successfully in a real robot domain. 
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Figure 4: How does domain knowledge improve generalization? a. Averaged results for EBNN 
domain theories of differing accuracies, pre-trained with from 5 to 8 192 training examples for each 
action model network. In contrast, the bold grey line reflects the learning curve for pure inductive 
learning, i.e., Q-Leaming and TD(A). b. Same experiments, but without weighting the analytical 
component of EBNN by its accuracy, illustrating the importance of the WB* heuristic. All curves 
are averaged over 3 runs and are also locally window-averaged. The perfonnance (vertical axis) is 
measured on an independent test set of starting positions. 

EBNN differs from other approaches to knowledge-based neural network learning, such 
as Shavlik/fowell's KBANNs [Shavlik and Towell, 1989]. in that the domain knowledge 
and the target function are strictly separated, and that both are learned from scratch. A 
major difference from other model-based approaches to robot learning, such as Sutton's 
DYNA architecture [Sutton, 1990] or Jordan!Rumelhart's distal teacher method [Jordan 
and Rumelhart, 1990], is the ability of EBNN to operate across the spectrum of strong to 
weak domain theories (using LOB*). EBNN has been found to degrade gracefully as the 
accuracy of the domain theory decreases. 
We have demonstrated the ability of EBNN to transfer knowledge among robot learning 
tasks. However, there are several open questions which will drive future research, the 
most significant of which are: a. Can EBNN be extended to real-valued, parameterized 
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action spaces? So far we assume discrete actions. b. Can EBNN be extended to handle 
first-order predicate logic. which is common in symbolic approaches to EBL? c. How will 
EBNN perform in highly stochastic domains? d. Can knowledge other than slopes (such 
as higher order derivatives) be extracted via explanations? e. Is it feasible to automatically 
partition/modularize the domain theory as well as the target function, as this is the case with 
symbolic EBL methods? More research on these issues is warranted. 
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