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Abstract 

We present a neural net architecture that can discover hierarchical and re
cursive structure in symbol strings. To detect structure at multiple levels, 
the architecture has the capability of reducing symbols substrings to single 
symbols, and makes use of an external stack memory. In terms of formal 
languages, the architecture can learn to parse strings in an LR(O) context
free grammar. Given training sets of positive and negative exemplars, 
the architecture has been trained to recognize many different grammars. 
The architecture has only one layer of modifiable weights, allowing for a 
straightforward interpretation of its behavior. 

Many cognitive domains involve complex sequences that contain hierarchical or 
recursive structure, e.g., music, natural language parsing, event perception. To il
lustrate, "the spider that ate the hairy fly" is a noun phrase containing the embed
ded noun phrase "the hairy fly." Understanding such multilevel structures requires 
forming reduced descriptions (Hinton, 1988) in which a string of symbols or states 
("the hairy fly") is reduced to a single symbolic entity (a noun phrase). We present 
a neural net architecture that learns to encode the structure of symbol strings via 
such red uction transformations. 

The difficult problem of extracting multilevel structure from complex, extended 
sequences has been studied by Mozer (1992), Ring (1993), Rohwer (1990), and 
Schmidhuber (1992), among others. While these previous efforts have made some 
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Figure 1: The demon model. 

progress, no one has claimed victory over the problem. Our approach is based on a 
new perspective-one of symbolic reduction transformations-which affords a fresh 
attack on the problem. 

1 A BLACKBOARD ARCHITECTURE 

Our inspiration is a blackboard style architecture that works as follows. The input, 
a sequence of symbols, is copied onto a blackboard-a scratch pad memory-one 
symbol at a time. A set of demon, watch over the blackboard, each looking for a 
specific pattern of symbols. When a demon observes its pattern, it fire" causing 
the pattern to be replaced by a symbol associated with that demon, which we'll call 
its identity. This process continues until the entire input string has been read or no 
demon can fire. The sequence of demon firings and the final blackboard contents 
specify the structure of the input. 

The model we present is a simplified version of this blackboard architecture. The 
blackboard is implemented as a stack. Consequently, the demons have no control 
over where they write or read a symbol; they simply push and pop symbols from 
the stack. The other simplification is that the demon firing is based on template 
matching, rather than a more sophisticated form of pattern matching. 

The demon model is sketched in Figure 1. An input queue holds the input string 
to be parsed, which is gradually transferred to the stack. The top k stack symbols 
are encoded in a set of dack unit&; in the current implementation, k = 2. Each 
demon is embodied by a special processing unit which receives input from the stack 
units. The weights of each demon unit specify a pair of symbols, which the demon 
unit matches against the two stack symbols. If there is a match, the demon unit 
pops the top two stack symbols and pushes its identity. If no demon unit matches, 
an additional unit, called the default unit, becomes active. The default unit is 
responsible for transferring a symbol from the input queue onto the stack. 
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Figure 2: The rewrite rules defining a grammar that generates strings of the form 
anbn and a parse tree for the string aabb. 

2 PARSING CONTEXT-FREE LANGUAGES 

Each demon unit reduces a pair of symbols to a single symbol. We can express 
the operation of a demon as a rewrite rule of the form X --+ a b, where the lower 
case letters denote symbols in the input string and upper case letters denote the 
demon identities, also symbols in their own right. The above rule specifies that 
when the symbols a and b appear on the top of the stack, in that order, the X 
demon unit should fire, erasing those two symbols and replacing them with an X. 
Demon units can respond to internal symbols (demon identities) instead of input 
symbols, allowing internal symbols on the right hand side of the rule. Demon units 
can also respond to individual input symbols, achieving rules of the form X --+ a. 

Multiple demon units can have the same identity, leading to rewrite rules of a 
more general form, e.g., X --+ a b lYe I d Z I a. This class of rewrite rules can 
express a subset of context-free grammars. Figure 2 shows a sample grammar that 
generates strings of the form anbn and a parse tree for the input string aabb. The 
demon model essentially constructs such parse trees via the sequence of reduction 
operations. 

That each rule has only one or two symbols on the right hand side imposes no 
limitation on the class of grammars that can be recognized. However, the demon 
model does require certain knowledge about the grammars to be identified. First, 
the maximum number of rewrite rules and the maximum number of rules having the 
same left-hand side must be specified in advance. This is because the units have 
to be allocated prior to learning. Second, the LR-class of the grammar must be 
given. To explain, any context-free grammar can be characterized as LR( n), which 
indicates that the strings of the grammar can be parsed from left to right with n 
symbols of look ahead on the input queue. The demon model requires that n be 
specified in advance. In the present work, we examine only LR(O) grammars, but 
the architecture can readily be generalized to arbitrary n. 

Giles et al. (1990), Sun et al. (1990), and Das, Giles, and Sun (1992) have previously 
explored the learning of context-free grammars in a neural net. Their approach was 
based on the automaton perspective of a recognizer, where the primary interest was 
to learn the dynamics of a pushdown automaton. There has also been significant 
work in context-free grammar inference using symbolic approaches. In general, these 
approaches require a significant amount of prior information about the grammar 
and, although theoretically sound, have not proven terribly useful in practice. A 
promising exception is the recent proposal of Stolcke (1993). 

. .. 
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3 CONTINUOUS DYNAMICS 

So far, we have described the model in a discrete way: demon firing is all-or
none and mutually exclusive, corresponding to the demon units achieving a unary 
representation. This may be the desired behavior following learning, but neural net 
learning algorithms like back propagation require exploration in continuous state 
and weight spaces and therefore need to allow partial activity of demon units. The 
continuous activation dynamics follow. 

Demon unit i computes the distance between its weights, Wi, and the input, x: 
di.ti = bi IWi - xl 2 , where bi is an adjustable bias associated with the unit. The 
activity of unit i, denoted .i, is computed via a normalized exponential transform 
(Bridle, 1990j Rumelhart, in press), 

e-di,ti 

·i = L:i e-didj , 

which enforces a competition among the units. A special unit, called the default 
unit, is designed to respond when none of the demons fire strongly. Its activity, 
.del, is computed like that of any demon unit with di.tdel = bdel' 

4 CONTINUOUS STACK 

Because demon units can be partially active, stack operations need to be performed 
partially. This can be accomplished with a continuou.s .stack (Giles et al., 1990). 
Unlike a discrete stack where an item is either present or absent, items can be 
present to varying degrees. Each item on the stack has an associated thickneu, a 
scalar in the interval [0,1] indicating what fraction of the item is present (Figure 3). 

To understand how the thickness plays a role in processing, we digress briefly and 
explain the encoding of symbols. Both on the stack and in the network, symbols 
are represented by numerical vectors that have one component per symbol. The 
vector representation of some symbol X, denoted rx, has value 1 for the component 
corresponding to X and 0 for all other components. H the symbol has thickness t, 
the vector representation is trX' 

Although items on the stack have different thicknesses, the network is presented 
with compo.site .ymbol.s having thickness 1.0. Composite symbols are formed by 
combining stack items. For example, in Figure 3, composite symbol 1 is defined as 
the vector .2rX + .5rz + .3rv. The input to the demon network consists of the top 
two composite symbols on the stack. 

The advantages of a continuous stack are twofold. First, it is required for network 
learningj if a discrete stack were used, a small change in weights could result in a big 
(discrete) change in the stack. This was the motivation underlying the continuous 
stack used by Giles et ale Second, the continuous stack is differentiable and hence 
allows us to back propagate error through the stack during learning. While we have 
summarized this point in one sentence, the reader must appreciate the fact that it 
is no small feat! Giles et ale did not consider back propagation through the stack. 

Each time step, the network performs two operations on the stack: 
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Figure 3: A continuous stack. The symbols indicate the contentsj the height of 
a stack entry indicates its thickness, also given by the number to the right. The 
top composite symbol on the stack is a combination of the items forming a total 
thickness of 1.0j the next composite symbol is a combination of the items making 
up the next 1.0 units of thickness. 

Pop. IT a demon unit fires, the top two composite symbols should be popped from 
the stack (to be replaced by the demon's identity). If no demon unit fires, in which 
case the default unit becomes active, the stack should remain unchanged. These 
behaviors, as well as interpolated behaviors, are achieved by multiplying by 6deJ 

the thickness of any portion of a stack item contributing to the top two composite 
symbols. Remember that BdeJ is 0 when one or more demon units are strongly 
active, and is 1 when the default unit is fully active. 

Push. The symbol written onto the stack is the composite symbol formed by sum
ming the identity vectors of the demon units, weighted by their activities: L:i 8iri, 

where ri is the vector representing demon i's identity. Included in this summation 
is the default unit, where rdeJ is defined to be the composite symbol over thickness 
'deJ of the input queue. (After a thickness of BdcJ is read from the input queue, it 
is removed from the queue.) 

5 TRAINING METHODOLOGY 

The system is trained on positive and negative examples of a context-free grammar. 
Its task is to classify each input string as grammatical or not. Because the grammars 
can always be written such that the root of the parse tree is the symbol S (e.g., 
Figure 2), the stack should contain just S upon completion of processing ofa positive 
example. For a negative example, the stack should contain anything but s. 
These criteria can be translated into an objective function as follows. If one assumes 
a Gaussian noise distribution over outputs, the probability that the top of the stack 
contains the symbol S following presentation of example i is 

pioot <X e- 1c,-rs I2 , 

where Ci is the vector representing the top composite symbol on the stackj and the 
probability that the total thickness of the stack is 1 (i.e., the stack contains exactly 
one item) is 
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where n is the total thickness of the stack and ~ is a constant. For a positive 
example, the objective function should be greatest when there is a high probability 
of S being on the stack and a high probability of it being the sole item on the 
stackj for a negative example, the objective function should be greatest when either 
event has a low probability. We thus obtain a likelihood objective function whose 
logarithm the learning procedure attempts to maximize: 

L= IT IT 
iEpos example iEneg example 

Training sets were generated by hand, with a preference for shorter strings. Pos
itive examples were generated from the grammarj negative examples were either 
randomly generated or were formed by perturbing a grammatical string. In most 
training sets, there were roughly 3-5 times as many negative examples as positive. 
One might validly be concerned that we introduced some bias in our selection of 
examples. Ifso, it was not deliberate. In the initial experiments reported below, our 
goal was primarily to demonstrate that under some conditions, the network could 
actually induce the grammar. In the next phase of our research, we plan a sys
tematic investigation of the number and nature of examples required for successful 
learning. 

The total number of demon units and the (fixed) identity of each was specified 
in advance of learning. For the grammar in Figure 2, we provided at least two 
S demons and one X demon. Any number of demons beyond the minimum did 
not affect performance. The initial weights {Wij} were selected from a uniform 
distribution over the interval [.45, .55]. The bi were initialized to 1.0. 

Before an example is presented, the stack is reset to contain only a single symbol, the 
null symbol with vector representation 0 and infinite thickness. The example string 
is placed in the input queue. The network is then allowed to run for 21-1 time steps, 
which is exactly the number of steps required to process any grammatical string 
of length I. One can intuit this fact by considering that it takes two operations to 
process each symbol, one to transfer the symbol from the input queue to the stack, 
and another to reduce the symbol. 

The derivative of the objective function is computed with respect to the weight 
parameters using a form of back propagation through time (Rumelhart, Hinton, 
& Williams, 1986). This involves "unfolding" the architecture in time and back 
propagating through the stack. Weights are then updated to perform gradient 
ascent in the log likelihood function. 

6 RESULTS AND DISCUSSION 

We have successfully trained the architecture on a variety of grammars, including 
those shown in Table 1. In each case, the network discriminates positive and nega
tive examples perfectly on the training set. For the first three grammars, additional 
(longer) strings were used to test network generalization performance. In each case, 
generalization performance was 100%. 
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Figure 4: Sample weights for anbn • Weights are organized by demon unit, whose 
identities appear above the rectangles. The top and bottom halves of the rectangle 
represents connections from composite symbols 1 and 2, respectively. The darker 
the shading is of a symbol in a rectangle, the larger the connection strength is from 
the input unit representing that symbol to the demon unit. The weights clearly 
indicate the three rewrite rules of the grammar. 

Table 1: Grammars successfully learned by the demon model 
I grammar name I rewrite rulel I 

anbn S--+ablaX 
X--+Sb 

parenthesis balancing S --+ (J) 11 X T S S 
X--+S 

postfix s--+Yxlsx 
x--+Y+ls+ 
Y--+alb 

pseudo natural language S --+ NP VP 
NP --+ d NP2 I NP2 
NP2 --+ n I an 
VP --+ v NP 

Due to the simplicity of the architecture-the fact that there is only one layer of 
modifiable weights-the learned weights can often be interpreted as symbolic rewrite 
rules (Figure 4). It is a remarkable achievement that the numerical optimization 
framework of neural net learning can be used to discover symbolic rules (see also 
Mozer &. Bachrach, 1991). 

The first three grammars were successfully learned by the model of Giles et al. 
(1990), although the analysis required to interpret the weights is generally more 
cumbersome and tentative. The last grammar could not be learned by their model 
(Das et al., 1992). 

When more demon units are provided to the model than are required for the domain, 
the weights tend to be less interpretable, but generalization performance is just as 
good. (Of course, this result can hold for only a limited range of network sizes.) 
The model also does well with very small training sets (e.g., three positive, three 
negative examples for anbn ). This is no doubt because the architecture imposes 
strong biases on the learning process. We performed some preliminary experiments 
with staged training in which the length of strings in the training set was increased 
gradually, allowing the model to first learn simple cases and then move on to more 
difficult cases. This substantially improved the training time and robustness. 



870 Mozer and Das 

Although the current version of the model is designed for LR(O) context-free gram
mars, it can be extended to LR(n) by including connections from the first n com
posite symbols in the input queue to the demon units. However, our focus is not 
necessarily on building the theoretically most powerful formal language recognizer 
and learning systemj rather, our primary interest has been on integrating symbol 
manipulation capabilities into a neural network architecture. In this regard, the 
model makes a clear contribution. It has the ability represent a string of sym
bols with a single symbol, and to do so iteratively, allowing for the formation of 
hierarchical and recursive structures. This is the essence of symbolic information 
processing, and, in our view, a key ingredient necessary for structure learning. 
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