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Abstract 

We propose a very simple, and well principled way of computing 
the optimal step size in gradient descent algorithms. The on-line 
version is very efficient computationally, and is applicable to large 
backpropagation networks trained on large data sets. The main 
ingredient is a technique for estimating the principal eigenvalue(s) 
and eigenvector(s) of the objective function's second derivative ma­
trix (Hessian), which does not require to even calculate the Hes­
sian. Several other applications of this technique are proposed for 
speeding up learning, or for eliminating useless parameters. 

1 INTRODUCTION 

Choosing the appropriate learning rate, or step size, in a gradient descent procedure 
such as backpropagation, is simultaneously one of the most crucial and expert­
intensive part of neural-network learning. We propose a method for computing the 
best step size which is both well-principled, simple, very cheap computationally, 
and, most of all, applicable to on-line training with large networks and data sets. 
Learning algorithms that use Gradient Descent minimize an objective function E 
of the form 

p 

E(W) = ~EEP(W) 
p=O 

EP = E(W,XP) (1) 

where W is the vector of parameters (weights), P is the number of training patterns, 
and XP is the p-th training example (including the desired output if necessary). Two 
basic versions of gradient descent can be used to minimize E. In the first version, 
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called the batch version, the exact gradient of E with respect to W is calculated, 
and the weights are updated by iterating the procedure 

W - W - 1]VE(W) (2) 

where 1] is the learning rate or step size, and VE(W) is the gradient of E with 
respect to W. In the second version, called on-line, or Stochastic Gradient Descent, 
the weights are updated after each pattern presentation 

(3) 

Before going any further, we should emphasize that our main interest is in training 
large networks on large data sets. As many authors have shown, Stochastic Gradient 
Descent (SGD) is much faster on large problems than the "batch" version. In fact, 
on large problems, a carefully tuned SGD algorithm outperforms most accelerated 
or second-order batch techniques, including Conjugate Gradient. Although there 
have been attempts to "stochasticize" second-order algorithms (Becker and Le Cun, 
1988) (Moller, 1992), most of the resulting procedures also rely on a global scaling 
parameter similar to 1]. Therefore, there is considerable interest in finding ways of 
optimizing 1]. 

2 COMPUTING THE OPTIMAL LEARNING RATE: 
THE RECIPE 

In a somewhat unconventional way, we first give our simple "recipe" for computing 
the optimal learning rate 1]. In the subsequent sections, we sketch the theory behind 
the recipe. 

Here is the proposed procedure for estimating the optimal learning rate in a back­
propagation network trained with Stochastic Gradient Descent. Equivalent proce­
dures for other adaptive machines are strai~htforward. In the following, the notation 
N(V) designates the normalized vector V /11 VII. Let W be the N dimensional weight 
vector, 

1. pick a normalized, N dimensional vector \If at random. Pick two small 
positive constants a and " say a = 0.01 and, = 0.01. 

2. pick a training example (input and desired output) XP. Perform a regular 
forward prop and a backward prop. Store the resulting gradient vector 
G1 = VEP(W). 

3. add aNew) to the current weight vector W, 
4. perform a forward prop and a backward prop on the same pattern us­

ing the perturbed weight vector. Store the resulting gradient vector 
G2 ::: VEP(W + aN(w» 

5. update vector W with the runmng average formula 
W - (1 -,)w + ;( G2 - G.). 

6. restore the weight vector to its original value W. 
7. loop to step 2 until Ilwll stabilizes. 

8. set the learning rate 1] to IIWII- 1, and go on to a regular training session. 

The constant a controls the size of the perturbation. A small a gives a better esti­
mate, but is more likely to cause numerical errors. , controls the tradeoff between 
the convergence speed of wand the accuracy of the result. It is better to start with 
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Figure 1: Gradient descent with optimal learning rate in (a) one dimension, and 
(b) two dimensions (contour plot). 

a relatively large 'Y (say 0.1) and progressively decrease it until the fluctuations on 
1I\]i1l are less than say 10%. In our experience accurate estimates can be obtained 
with between one hundred and a few hundred pattern presentations: for a large 
problem, the cost is very small compared to a single learning epoch. 

3 STEP SIZE, CURVATURE AND EIGENVALUES 

The procedure described in the previous section makes "\]ill converge to the largest 
positive eigenvalue of the second derivative matrix of the average obJective function. 
In this section we informally explain why the best learning rate is the inverse of this 
eigenvalue. More detailed analysis of gradient descent procedures can be found in 
Optimization, Statistical Estimation, or Adaptive Filtering textbooks (see for ex­
ample (Widrow and Stearns, 1985». For didactical purposes, consider an objective 
function of the form E(w) = ~(w - z)2 + C where w is a scalar parameter (see 
fig l(a». Assuming w is the current value of the parameter, what is the optimal 
1] that takes us to the minimum in one step? It is easy to visualize that, as it has 
been known since Newton, the optimal TJ is the inverse of the second derivative of 
E, i.e. 1/ h. Any smaller or slightly larger value will yield slower convergence. A 
value more then twice the optimal will cause divergence. 

In multidimension, things are more complicated. If the objective function is 
quadratic, the surfaces of equal cost are ellipsoids (or ellipses in 2D as shown on 
figure l(b». Intuitively, if the learning rate is set for optimal convergence along the 
direction of largest second derivative, then it will be small enough to ensure (slow) 
convergence along all the other directions. This corresponds to setting the learning 
rate to the inverse of the second derivative in the direction in which it is the largest. 
The largest learning rate that ensures convergence is twice that value. The actual 
optimal TJ is somewhere in between. Setting it to the inverse of the largest second 
derivative is both safe, and close enough to the optimal. The second derivative 
information is contained in the Hessian matrix of E(W): the symmetric matrix H 
whose (i,j) component is ()2 E(W)/OWiOWj. If the learning machine has N free 
parameters (weights), H is an N by N matrix. The Hessian can be decomposed 
(diagonalized) into a product of the form H = RART, where A is a diagonal matrix 
whose diagonal terms (the eigenvalues of H) are the second derivatives of E(W) 
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along the principal axes of the ellipsoids of equal cost, and R is a rotation matrix 
which defines the directions of these principal axes. The direction of largest second 
derivative is the principal eigenvector of H, and the largest second derivative is 
the corresponding eigenvalue (the largest one). In short, it can be shown that the 
optimal learning rate is the inverse of the largest eigenvalue of H: 

1 
1Jopt = ~ 

"max 

4 COMPUTING THE HESSIAN'S LARGEST 
EIGENVALUE WITHOUT COMPUTING THE 
HESSIAN 

(4) 

This section derives the recipe given in section 2. Large learning machines, such as 
backpropagation networks can have several thousand free parameters. Computing, 
or even storing, the full Hessian matrix is often prohibitively expensive. So at first 
glance, finding its largest eigenvalue in a reasonable time seems rather hopeless. 
We are about to propose a shortcut based on three simple ideas: 1- the Taylor 
expansion, 2- the power method, 3- the running average. The method described 
here is general, and can be applied to any differentiable objective function that can 
be written as an average over "examples" (e.g. RBFs, or other statistical estimation 
techniques). 

Taylor expansion: Although it is often unrealistic to compute the Hessian H, 
there is a simple way to approximate the product of H by a vector of our choosing. 
Let \II be an N dimensional vector, and a a small real constant, the Taylor expansion 
of the gradient of E(W) around W along the direction \II gives us 

H\II = V'E(W + a\ll) - V'E(W) + O(a2 ) (5) 
a 

Assuming E is locally quadratic (i.e. ignoring the O(a2 ) term), the product of H by 
any vector W can be estimated by subtracting the gradient of E at point (W + a\ll) 
from the gradient at W. This is an O(N) process, compared to the O(N2) direct 
product. In the usual neural network context, this can be done with two forward 
propagations and two backward propagations. More accurate methods which do 
not use perturbations for computing H\II exist, but they are more complicated to 
implement than this one. (Pearlmutter, 1993). 

The power method: Let Amax be the largest eigenvalue! of H, and Vmax the 
corresponding normalized eigenvector (or a vector in the eigenspace if >'max is de­
generate). If we pick a vector \II (say, at random) which is non-orthogonal to Vmax , 
then iterating the procedure 

\II .- H N(\II) (6) 

will make N(\II) converge to Vmax , and IIwll converge to I>'maxl. The procedure 
is slow if good accuracy is required, but a good estimate of the eigenvalue can be 
obtained with a very small number of iterations (typically about 10). The reason 
for introducing equation (5), is now clear: we can use it to compute the right hand 
side of (6), yielding 

\II .- 1. (V'E (W + aN(\II» - V'E(W» 
a 

(7) 

llargest in absolute value, not largest algebraically 
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where W is the current estimate of the principal eigenvector of H, and a is a small 
constant. 

The "on-line" version: One iteration of the procedure (7) requires the computa­
tion of the gradient of E at two different points of the parameter space. This means 
that one iteration of (7) is roughly equivalent to two epochs of gradient descent 
learning (two passes through the entire training set). Since (7) needs to be iterated, 
say 10 times, the total cost of estimating Amax would be approximately equivalent 
to 20 epochs. 

This excessive cost can be drastically reduced with an "on-line" version of (7) which 
exploits the stationarity of the second-order information over large (and redundant) 
training sets. Essentially, the hidden "average over patterns" in VE can be replaced 
by a running average. The procedure becomes 

1 
\II <- (1 - ,)w + ,- (VE (W + aN(w» - VE(W» 

a 
(8) 

where , is a small constant which controls the tradeoff between the convergence 
speed and the accuracy 2. The "recipe" given in section 2 is a direct implementation 
of (8). Empirically, this procedure yields sufficiently accurate values in a very short 
time. In fact, in all the cases we have tried, it converged with only a few dozen 
pattern presentations: a fraction of the time of an entire learning pass through 
the training set (see the results section). It looks like the essential features of the 
Hessian can be extracted from only a few examples of the training set. In other 
words, the largest eigenvalue of the Hessian seems to be mainly determined by the 
network architecture and initial weights, and by short-term, low-order statistics of 
the input data. It should be noted that the on-line procedure can only find positive 
eigenvalues. 

5 A FEW RESULTS 

Experiments will be described for two different network architectures trained on seg­
mented handwritten digits taken from the NIST database. Inputs to the networks 
were 28x28 pixel images containing a centered and size-normalized image of the 
character. Network 1 was a 4-hidden layer, locally-connected network with shared 
weights similar to (Le Cun et al., 1990a) but with fewer feature maps. Each layer 
is only connected to the layer above. the input is 32x32 (there is a border around 
the 28x28 image), layer 1 is 2x28x28, with 5x5 convolutional (shared) connections. 
Layer 2 is 2x14x14 with 2x2 subsampled, averaging connections. Layer 3 is 4xl0xl0, 
with 2x5x5 convolutional connections. Layer 4 is 4x5x5 with 2x2 averaging connec­
tions, and the output layer is 10xlxl with 4x5x5 convolutional connections. The 
network has a total of 64,638 connections but only 1278 free parameters because 
of the weight sharing. Network 2 was a regular 784x30xlO fully-connected net­
work (23860 weights). The sigmoid function used for all units in both nets was 
1.7159 tanh(2/3x). Target outputs were set to +1 for the correct unit, and -1 for 
the others. 

To check the validity of our assumptions, we computed the full Hessian of Network 1 
on 300 patterns (using finite differences on the gradient) and obtained the eigen­
values and eigenvectors using one of the EISPACK routines. We then computed 

2the procedure (8) is not an unbiased estimator of (7). Large values of 'Yare likely 
to produce slightly underestimated eigenvalues, but this inaccuracy has no practical 
consequences. 
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Figure 2: Convergence of the on-line eigenvalue estimation (Network 1) 

the principal eigenvector and eigenvalue using procedures (7), and (8). All three 
methods agreed within less than a percent on the eigenvalue. An example run of 
(8) on a 1000 pattern set is shown on figure 2. A 10% accurate estimate of the 
largest eigenvalue is obtained in less than 200 pattern presentations (one fifth of 
the database). As can be seen, the value is fairly stable over small portions of the 
set, which means that increasing the set size would not require more iterations of 
the estimation procedure. 

A second series of experiments were run to verify the accuracy of the learning rate 
prediction. Network 1 was trained on 1000 patterns, and network 2 on 300 patterns, 
both with SGD. Figure 3 shows the Mean Squared Error of the two networks after 
1,2,3,4 and 5 passes through the training set as a function of the learning rate, for 
one particular initial weight vector. The constant I was set to 0.1 for the first 20 
patterns, 0.03 for the next 60, 0.01 for the next 120, and 0.003 for the next 200 (400 
total pattern presentations), but it was found that adequate values were obtained 
after only 100 to 200 pattern presentations. The vertical bar represents the value 
predicted by the method for that particular run. It is clear that the predicted 
optimal value is very close to the correct optimal learning rate. Other experiments 
with different training sets and initial weights gave similar results. Depending on 
the initial weights, the largest eigenvalue for Network 1 varied between 80 and 250, 
and for Network 2 between 250 and 400. Experiments tend to suggest that the 
optimal learning rate varies only slightly during the early phase of training. The 
learning rate may need to be decreased for long learning sessions, as SGD converts 
from the "getting near the minimum" mode to the "wobbling around" mode. 

There are many other method for adjusting the learning rate. Unfortunately, most 
of them are based on some measurement of the oscillations of the gradient (Jacobs, 
1987). Therefore, they are difficult to apply to stochastic gradient descent. 

6 MORE ON EIGENVALUES AND EIGENVECTORS 

We believe that computing the optimal learning rate is only one of many applications 
of our eigenvector estimation technique. The procedure can be adapted to serve 
many applications. 
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Figure 3: Mean Squared Error after 1,2,3,4, and 5 epochs (from top to bottom) as a 
function of the ratio between the learning rate TJ and the learning rate predicted by 
the proposed method 1I'l111-1. (a) Network 1 trained on 1000 patterns, (b) Network 
2 trained on 300 patterns. 

An important variation of the learning rate estimation is when, instead of update 
rule 3, we use a "scaled SGD" rule of the form W +- W - TJcI>V'EP(W), where cI> is 
a diagonal matrix (each weight has its own learning rate TJ4Jd. For example, each 
4Ji can be the inverse of the corresponding diagonal term of the average Hessian, 
which can be computed efficiently as suggested in (Le Cun, 1987; Becker and Le 
Cun, 1988). Then procedure 8 must be changed to 

'l1 +- (1 - ,)'l1 +, ! cI>~ (V'E (W + acI>~ N('l1)) - V'E(W)) (9) 

where the terms of cI>~ are the square root of the corresponding terms in cI>. More 
generally, the above formula applies to any transformation of the parameter space 
whose Jacobian is cI>~. The added cost is small since cI>~ is diagonal. 

Another extension of the procedure can compute the first J( principal eigenvectors 
and eigenvalues. The idea is to store J( ei~envector estimates 'l1k' k = 1 .. . J(, 
updated simultaneously with equation (8) tthis costs a factor J( over estimating 
only one). We must also ensure that the 'l1 k'S remain orthogonal to each other. 
This can be performed by projecting each 'l1 k onto the space orthogonal to the 
space sub tended by the 'l1l' I < k. This is an N J( process, which is relatively 
cheap if the network uses shared weights. A generalization of the acceleration 
method introduced in (Le Cun, Kanter and SoHa, 1991) can be implemented with 
this technique. The idea is to use a "Newton-like" weIght update formula of the 
type 

K 

W +- W - L II'l1k ll-1 Pk 
k=1 

where Pk, k = 1 ... J( - 1 is the projection of V'E( W) onto 'l1 k, and PK is the 
projection of V'E(W) on the space orthogonal to the 'l1k' (k = 1 ... J( - 1). In 
theory, this procedure can accelerate the training by a factor 1I'l1111/II'l1KII, which is 
between 3 and 10 for J( = 5 in a typical backprop network. Results will be reported 
in a later publication. 

Interestingly, the method can be slightly modified to yield the smallest eigenval­
ues/eigenvectors. First, the largest eigenvalue Amax must be computed (or bounded 



Automatic Learning Rate Maximization by Estimation of Hessian's Eigenvectors 163 

above). Then, by iterating 

W ~ (1 - ,)w + AmaxN(w) - ,.!. (VE (W + o:N(w» - VE(W» (10) 
a 

one can compute the eigenvector corresponding to the smallest (probably negative) 
eigenvalue of (H - AmaxI), which is the same as H's. This can be used to deter­
mine the direction(s) of displacement in parameter space that will cause the least 
increase of the objective function. There are obvious applications of this to weight 
elimination methods: a better version of OBD (Le Cun et al., 1990b) or a more 
efficient version of OBS (Hassibi and Stork, 1993). 

We have proposed efficient methods for (a) computing the product of the Hessian by 
any vector, and (b) estimating the few eigenvectors of largest or smallest eigenvalues. 
The methods were successfully applied the estimation of the optimal learning rate 
in Stochastic Gradient Descent learning We feel that we have only scratched the 
surface of the many applications of the proposed techniques. 
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