
Automatic Learning Rate Maximization
by On-Line Estimation of the Hessian's

Eigenvectors

Yann LeCun,l Patrice Y. Simard,l and Barak Pearlmutter2

1 AT&T Bell Laboratories 101 Crawfords Corner Rd, Holmdel, NJ 07733
2CS&E Dept. Oregon Grad. Inst., 19600 NW vonNeumann Dr, Beaverton, OR 97006

Abstract

We propose a very simple, and well principled way of computing
the optimal step size in gradient descent algorithms. The on-line
version is very efficient computationally, and is applicable to large
backpropagation networks trained on large data sets. The main
ingredient is a technique for estimating the principal eigenvalue(s)
and eigenvector(s) of the objective function's second derivative ma­
trix (Hessian), which does not require to even calculate the Hes­
sian. Several other applications of this technique are proposed for
speeding up learning, or for eliminating useless parameters.

1 INTRODUCTION

Choosing the appropriate learning rate, or step size, in a gradient descent procedure
such as backpropagation, is simultaneously one of the most crucial and expert­
intensive part of neural-network learning. We propose a method for computing the
best step size which is both well-principled, simple, very cheap computationally,
and, most of all, applicable to on-line training with large networks and data sets.
Learning algorithms that use Gradient Descent minimize an objective function E
of the form

p

E(W) = ~EEP(W)
p=O

EP = E(W,XP) (1)

where W is the vector of parameters (weights), P is the number of training patterns,
and XP is the p-th training example (including the desired output if necessary). Two
basic versions of gradient descent can be used to minimize E. In the first version,

156

Automatic Learning Rate Maximization by Estimation of Hessian's Eigenvectors 157

called the batch version, the exact gradient of E with respect to W is calculated,
and the weights are updated by iterating the procedure

W - W - 1]VE(W) (2)

where 1] is the learning rate or step size, and VE(W) is the gradient of E with
respect to W. In the second version, called on-line, or Stochastic Gradient Descent,
the weights are updated after each pattern presentation

(3)

Before going any further, we should emphasize that our main interest is in training
large networks on large data sets. As many authors have shown, Stochastic Gradient
Descent (SGD) is much faster on large problems than the "batch" version. In fact,
on large problems, a carefully tuned SGD algorithm outperforms most accelerated
or second-order batch techniques, including Conjugate Gradient. Although there
have been attempts to "stochasticize" second-order algorithms (Becker and Le Cun,
1988) (Moller, 1992), most of the resulting procedures also rely on a global scaling
parameter similar to 1]. Therefore, there is considerable interest in finding ways of
optimizing 1].

2 COMPUTING THE OPTIMAL LEARNING RATE:
THE RECIPE

In a somewhat unconventional way, we first give our simple "recipe" for computing
the optimal learning rate 1]. In the subsequent sections, we sketch the theory behind
the recipe.

Here is the proposed procedure for estimating the optimal learning rate in a back­
propagation network trained with Stochastic Gradient Descent. Equivalent proce­
dures for other adaptive machines are strai~htforward. In the following, the notation
N(V) designates the normalized vector V /11 VII. Let W be the N dimensional weight
vector,

1. pick a normalized, N dimensional vector \If at random. Pick two small
positive constants a and " say a = 0.01 and, = 0.01.

2. pick a training example (input and desired output) XP. Perform a regular
forward prop and a backward prop. Store the resulting gradient vector
G1 = VEP(W).

3. add aNew) to the current weight vector W,
4. perform a forward prop and a backward prop on the same pattern us­

ing the perturbed weight vector. Store the resulting gradient vector
G2 ::: VEP(W + aN(w»

5. update vector W with the runmng average formula
W - (1 -,)w + ;(G2 - G.).

6. restore the weight vector to its original value W.
7. loop to step 2 until Ilwll stabilizes.

8. set the learning rate 1] to IIWII- 1, and go on to a regular training session.

The constant a controls the size of the perturbation. A small a gives a better esti­
mate, but is more likely to cause numerical errors. , controls the tradeoff between
the convergence speed of wand the accuracy of the result. It is better to start with

158 LeCun, Simard, and Pearlmutter

E(W)

W

z
(a)

W2 principal
eigenvector

~--------------~~Wl

(b)

Figure 1: Gradient descent with optimal learning rate in (a) one dimension, and
(b) two dimensions (contour plot).

a relatively large 'Y (say 0.1) and progressively decrease it until the fluctuations on
1I\]i1l are less than say 10%. In our experience accurate estimates can be obtained
with between one hundred and a few hundred pattern presentations: for a large
problem, the cost is very small compared to a single learning epoch.

3 STEP SIZE, CURVATURE AND EIGENVALUES

The procedure described in the previous section makes "\]ill converge to the largest
positive eigenvalue of the second derivative matrix of the average obJective function.
In this section we informally explain why the best learning rate is the inverse of this
eigenvalue. More detailed analysis of gradient descent procedures can be found in
Optimization, Statistical Estimation, or Adaptive Filtering textbooks (see for ex­
ample (Widrow and Stearns, 1985». For didactical purposes, consider an objective
function of the form E(w) = ~(w - z)2 + C where w is a scalar parameter (see
fig l(a». Assuming w is the current value of the parameter, what is the optimal
1] that takes us to the minimum in one step? It is easy to visualize that, as it has
been known since Newton, the optimal TJ is the inverse of the second derivative of
E, i.e. 1/ h. Any smaller or slightly larger value will yield slower convergence. A
value more then twice the optimal will cause divergence.

In multidimension, things are more complicated. If the objective function is
quadratic, the surfaces of equal cost are ellipsoids (or ellipses in 2D as shown on
figure l(b». Intuitively, if the learning rate is set for optimal convergence along the
direction of largest second derivative, then it will be small enough to ensure (slow)
convergence along all the other directions. This corresponds to setting the learning
rate to the inverse of the second derivative in the direction in which it is the largest.
The largest learning rate that ensures convergence is twice that value. The actual
optimal TJ is somewhere in between. Setting it to the inverse of the largest second
derivative is both safe, and close enough to the optimal. The second derivative
information is contained in the Hessian matrix of E(W): the symmetric matrix H
whose (i,j) component is ()2 E(W)/OWiOWj. If the learning machine has N free
parameters (weights), H is an N by N matrix. The Hessian can be decomposed
(diagonalized) into a product of the form H = RART, where A is a diagonal matrix
whose diagonal terms (the eigenvalues of H) are the second derivatives of E(W)

Automatic Learning Rate Maximization by Estimation of Hessian's Eigenvectors 159

along the principal axes of the ellipsoids of equal cost, and R is a rotation matrix
which defines the directions of these principal axes. The direction of largest second
derivative is the principal eigenvector of H, and the largest second derivative is
the corresponding eigenvalue (the largest one). In short, it can be shown that the
optimal learning rate is the inverse of the largest eigenvalue of H:

1
1Jopt = ~

"max

4 COMPUTING THE HESSIAN'S LARGEST
EIGENVALUE WITHOUT COMPUTING THE
HESSIAN

(4)

This section derives the recipe given in section 2. Large learning machines, such as
backpropagation networks can have several thousand free parameters. Computing,
or even storing, the full Hessian matrix is often prohibitively expensive. So at first
glance, finding its largest eigenvalue in a reasonable time seems rather hopeless.
We are about to propose a shortcut based on three simple ideas: 1- the Taylor
expansion, 2- the power method, 3- the running average. The method described
here is general, and can be applied to any differentiable objective function that can
be written as an average over "examples" (e.g. RBFs, or other statistical estimation
techniques).

Taylor expansion: Although it is often unrealistic to compute the Hessian H,
there is a simple way to approximate the product of H by a vector of our choosing.
Let \II be an N dimensional vector, and a a small real constant, the Taylor expansion
of the gradient of E(W) around W along the direction \II gives us

H\II = V'E(W + a\ll) - V'E(W) + O(a2) (5)
a

Assuming E is locally quadratic (i.e. ignoring the O(a2) term), the product of H by
any vector W can be estimated by subtracting the gradient of E at point (W + a\ll)
from the gradient at W. This is an O(N) process, compared to the O(N2) direct
product. In the usual neural network context, this can be done with two forward
propagations and two backward propagations. More accurate methods which do
not use perturbations for computing H\II exist, but they are more complicated to
implement than this one. (Pearlmutter, 1993).

The power method: Let Amax be the largest eigenvalue! of H, and Vmax the
corresponding normalized eigenvector (or a vector in the eigenspace if >'max is de­
generate). If we pick a vector \II (say, at random) which is non-orthogonal to Vmax ,
then iterating the procedure

\II .- H N(\II) (6)

will make N(\II) converge to Vmax , and IIwll converge to I>'maxl. The procedure
is slow if good accuracy is required, but a good estimate of the eigenvalue can be
obtained with a very small number of iterations (typically about 10). The reason
for introducing equation (5), is now clear: we can use it to compute the right hand
side of (6), yielding

\II .- 1. (V'E (W + aN(\II» - V'E(W»
a

(7)

llargest in absolute value, not largest algebraically

160 LeCun, Simard, and Pearlmutter

where W is the current estimate of the principal eigenvector of H, and a is a small
constant.

The "on-line" version: One iteration of the procedure (7) requires the computa­
tion of the gradient of E at two different points of the parameter space. This means
that one iteration of (7) is roughly equivalent to two epochs of gradient descent
learning (two passes through the entire training set). Since (7) needs to be iterated,
say 10 times, the total cost of estimating Amax would be approximately equivalent
to 20 epochs.

This excessive cost can be drastically reduced with an "on-line" version of (7) which
exploits the stationarity of the second-order information over large (and redundant)
training sets. Essentially, the hidden "average over patterns" in VE can be replaced
by a running average. The procedure becomes

1
\II <- (1 - ,)w + ,- (VE (W + aN(w» - VE(W»

a
(8)

where , is a small constant which controls the tradeoff between the convergence
speed and the accuracy 2. The "recipe" given in section 2 is a direct implementation
of (8). Empirically, this procedure yields sufficiently accurate values in a very short
time. In fact, in all the cases we have tried, it converged with only a few dozen
pattern presentations: a fraction of the time of an entire learning pass through
the training set (see the results section). It looks like the essential features of the
Hessian can be extracted from only a few examples of the training set. In other
words, the largest eigenvalue of the Hessian seems to be mainly determined by the
network architecture and initial weights, and by short-term, low-order statistics of
the input data. It should be noted that the on-line procedure can only find positive
eigenvalues.

5 A FEW RESULTS

Experiments will be described for two different network architectures trained on seg­
mented handwritten digits taken from the NIST database. Inputs to the networks
were 28x28 pixel images containing a centered and size-normalized image of the
character. Network 1 was a 4-hidden layer, locally-connected network with shared
weights similar to (Le Cun et al., 1990a) but with fewer feature maps. Each layer
is only connected to the layer above. the input is 32x32 (there is a border around
the 28x28 image), layer 1 is 2x28x28, with 5x5 convolutional (shared) connections.
Layer 2 is 2x14x14 with 2x2 subsampled, averaging connections. Layer 3 is 4xl0xl0,
with 2x5x5 convolutional connections. Layer 4 is 4x5x5 with 2x2 averaging connec­
tions, and the output layer is 10xlxl with 4x5x5 convolutional connections. The
network has a total of 64,638 connections but only 1278 free parameters because
of the weight sharing. Network 2 was a regular 784x30xlO fully-connected net­
work (23860 weights). The sigmoid function used for all units in both nets was
1.7159 tanh(2/3x). Target outputs were set to +1 for the correct unit, and -1 for
the others.

To check the validity of our assumptions, we computed the full Hessian of Network 1
on 300 patterns (using finite differences on the gradient) and obtained the eigen­
values and eigenvectors using one of the EISPACK routines. We then computed

2the procedure (8) is not an unbiased estimator of (7). Large values of 'Yare likely
to produce slightly underestimated eigenvalues, but this inaccuracy has no practical
consequences.

Automatic Learning Rate Maximization by Estimation of Hessian's Eigenvectors 161

80

70

II) 60 -IS
E 50 ;:

8
II) 40 '}'I=O.1 ::;,
ii
> 30
Ii '}'I=O.03

9 20
II)

10
'}'I=O.01 '}'I=O.003

o 0 60 100 150 200 250 300 350 400

Number of pattern presentations
Figure 2: Convergence of the on-line eigenvalue estimation (Network 1)

the principal eigenvector and eigenvalue using procedures (7), and (8). All three
methods agreed within less than a percent on the eigenvalue. An example run of
(8) on a 1000 pattern set is shown on figure 2. A 10% accurate estimate of the
largest eigenvalue is obtained in less than 200 pattern presentations (one fifth of
the database). As can be seen, the value is fairly stable over small portions of the
set, which means that increasing the set size would not require more iterations of
the estimation procedure.

A second series of experiments were run to verify the accuracy of the learning rate
prediction. Network 1 was trained on 1000 patterns, and network 2 on 300 patterns,
both with SGD. Figure 3 shows the Mean Squared Error of the two networks after
1,2,3,4 and 5 passes through the training set as a function of the learning rate, for
one particular initial weight vector. The constant I was set to 0.1 for the first 20
patterns, 0.03 for the next 60, 0.01 for the next 120, and 0.003 for the next 200 (400
total pattern presentations), but it was found that adequate values were obtained
after only 100 to 200 pattern presentations. The vertical bar represents the value
predicted by the method for that particular run. It is clear that the predicted
optimal value is very close to the correct optimal learning rate. Other experiments
with different training sets and initial weights gave similar results. Depending on
the initial weights, the largest eigenvalue for Network 1 varied between 80 and 250,
and for Network 2 between 250 and 400. Experiments tend to suggest that the
optimal learning rate varies only slightly during the early phase of training. The
learning rate may need to be decreased for long learning sessions, as SGD converts
from the "getting near the minimum" mode to the "wobbling around" mode.

There are many other method for adjusting the learning rate. Unfortunately, most
of them are based on some measurement of the oscillations of the gradient (Jacobs,
1987). Therefore, they are difficult to apply to stochastic gradient descent.

6 MORE ON EIGENVALUES AND EIGENVECTORS

We believe that computing the optimal learning rate is only one of many applications
of our eigenvector estimation technique. The procedure can be adapted to serve
many applications.

162 LeCun, Simard, and Pearl mutter

2 2
(a) (b)

a:: g ~
ffi 1.5 ffi 1.5
c c
ILl ILl a:: a::
c ~
::> i3 1 0 1
CI) CI)

z z
; ;

0.5 0.5

n n m A o 06-4 _____ -+-_ __ ~~-~...-
o 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 3: Mean Squared Error after 1,2,3,4, and 5 epochs (from top to bottom) as a
function of the ratio between the learning rate TJ and the learning rate predicted by
the proposed method 1I'l111-1. (a) Network 1 trained on 1000 patterns, (b) Network
2 trained on 300 patterns.

An important variation of the learning rate estimation is when, instead of update
rule 3, we use a "scaled SGD" rule of the form W +- W - TJcI>V'EP(W), where cI> is
a diagonal matrix (each weight has its own learning rate TJ4Jd. For example, each
4Ji can be the inverse of the corresponding diagonal term of the average Hessian,
which can be computed efficiently as suggested in (Le Cun, 1987; Becker and Le
Cun, 1988). Then procedure 8 must be changed to

'l1 +- (1 - ,)'l1 +, ! cI>~ (V'E (W + acI>~ N('l1)) - V'E(W)) (9)

where the terms of cI>~ are the square root of the corresponding terms in cI>. More
generally, the above formula applies to any transformation of the parameter space
whose Jacobian is cI>~. The added cost is small since cI>~ is diagonal.

Another extension of the procedure can compute the first J(principal eigenvectors
and eigenvalues. The idea is to store J(ei~envector estimates 'l1k' k = 1 .. . J(,
updated simultaneously with equation (8) tthis costs a factor J(over estimating
only one). We must also ensure that the 'l1 k'S remain orthogonal to each other.
This can be performed by projecting each 'l1 k onto the space orthogonal to the
space sub tended by the 'l1l' I < k. This is an N J(process, which is relatively
cheap if the network uses shared weights. A generalization of the acceleration
method introduced in (Le Cun, Kanter and SoHa, 1991) can be implemented with
this technique. The idea is to use a "Newton-like" weIght update formula of the
type

K

W +- W - L II'l1k ll-1 Pk
k=1

where Pk, k = 1 ... J(- 1 is the projection of V'E(W) onto 'l1 k, and PK is the
projection of V'E(W) on the space orthogonal to the 'l1k' (k = 1 ... J(- 1). In
theory, this procedure can accelerate the training by a factor 1I'l1111/II'l1KII, which is
between 3 and 10 for J(= 5 in a typical backprop network. Results will be reported
in a later publication.

Interestingly, the method can be slightly modified to yield the smallest eigenval­
ues/eigenvectors. First, the largest eigenvalue Amax must be computed (or bounded

Automatic Learning Rate Maximization by Estimation of Hessian's Eigenvectors 163

above). Then, by iterating

W ~ (1 - ,)w + AmaxN(w) - ,.!. (VE (W + o:N(w» - VE(W» (10)
a

one can compute the eigenvector corresponding to the smallest (probably negative)
eigenvalue of (H - AmaxI), which is the same as H's. This can be used to deter­
mine the direction(s) of displacement in parameter space that will cause the least
increase of the objective function. There are obvious applications of this to weight
elimination methods: a better version of OBD (Le Cun et al., 1990b) or a more
efficient version of OBS (Hassibi and Stork, 1993).

We have proposed efficient methods for (a) computing the product of the Hessian by
any vector, and (b) estimating the few eigenvectors of largest or smallest eigenvalues.
The methods were successfully applied the estimation of the optimal learning rate
in Stochastic Gradient Descent learning We feel that we have only scratched the
surface of the many applications of the proposed techniques.

Acknowledgements

Yann LeCun and Patrice Simard would like to thank the members of the Adaptive Systems
Research dept for their support and comments. Barak Pearlmutter was partially supported
by grants NSF ECS-9114333 and ONR N00014-92-J-4062 to John Moody.

References

Becker, S. and Le Cun, Y. (1988). Improving the Convergence of Back-Propagation
Learning with Second-Order Methods. Technical Report CRG-TR-88-5, Uni­
versity of Toronto Connectionist Research Group.

Hassibi, B. and Stork, D. (1993). Optimal Brain Surgeon. In Giles, L., Hanson, S.,
and Cowan, J., editors, Advances in Neural Information Processing Systems,
volume 5, (Denver, 1992). Morgan Kaufman.

Jacobs, R. A. (1987). Increased Rates of Convergence Through Learning Rate
Adaptation. Department of Computer and Information Sciences COINS-TR-
87-117, University of Massachusetts, Amherst, Ma.

Le Cun, Y. (1987). Modeles connexionnistes de l'apprentissage (connectionist learn­
ing models). PhD thesis, Universite P. et M. Curie (Paris 6).

Le Cun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,
W., and Jackel, L. D. (1990a). Handwritten digit recognition with a back­
propagation network. In Touretzky, D., editor, Advances in Neural Information
Processing Systems 2 (NIPS *89} , Denver, CO. Morgan Kaufman.

Le Cun, Y., Denker, J. S., SolI a, S., Howard, R. E., and Jackel, L. D. (1990b). Opti­
mal Brain Damage. In Touretzky, D., editor, Advances in Neural Information
Processing Systems 2 (NIPS*89), Denver, CO. Morgan Kaufman.

Le Cun, Y., Kanter, I., and Solla, S. (1991). Eigenvalues of covariance matrices:
application to neural-network learning. Physical Review Letters, 66(18):2396-
2399.

Moller, M. (1992). supervised learning on large redundant training sets. In Neural
Networks for Signal Processing 2. IEEE press.

Pearlmutter, B. (1993). Phd thesis, Carnegie-Mellon University. Pittsburgh PA.
Widrow, B. and Stearns, S. D. (1985). Adaptive Signal Processing. Prentice-Hall.

