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Abstract

Memory-based classification algorithms such as radial basis func-
tions or K-nearest neighbors typically rely on simple distances (Eu-
clidean, dot product...), which are not particularly meaningful on
pattern vectors. More complex, better suited distance measures are
often expensive and rather ad-hoc (elastic matching, deformable
templates). We propose a new distance measure which (a) can be
made locally invariant to any set of transformations of the input
and (b) can be computed efficiently. We tested the method on
large handwritten character databases provided by the Post Office
and the NIST. Using invariances with respect to translation, rota-
tion, scaling, shearing and line thickness, the method consistently
outperformed all other systems tested on the same databases.

1 INTRODUCTION

Distance-based classification algorithms such as radial basis functions or K-nearest
neighbors often rely on simple distances (such as Euclidean distance, Hamming
distance, etc.). As a result, they suffer from a very high sensitivity to simple
transformations of the input patterns that should leave the classification unchanged
(e.g. translation or scaling for 2D images). This is illustrated in Fig. 1 where an
unlabeled image of a “9” must be classified by finding the closest prototype image
out of two images representing respectively a “9” and a “4”. According to the
Euclidean distance (sum of the squares of the pixel to pixel differences), the “4”
is closer even though the “9” is much more similar once it has been rotated and
thickened. The result is an incorrect classification. The key idea is to construct a
distance measure which is invariant with respect to some chosen transformations
such as translation, rotation and others. The special case of linear transformations
has been well studied in statistics and is sometimes referred to as Procrustes analysis
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Pattern to
be classified Prototype A Prototype B

Figure 1: What is a good similarity measure? According to the Euclidean distance
the pattern to be classified is more similar to prototype B. A better distance measure
would find that prototype A is closer because it differs mainly by a rotation and a
thickness transformation, two transformations which should leave the classification
invariant.

(Sibson, 1978). It has been applied to on-line character recognition (Sinden and
Wilfong, 1992).

This paper considers the more general case of non-linear transformations such as
geometric transformations of gray-level images. Remember that even a simple
image translation corresponds to a highly non-linear transformation in the high-
dimensional pixel space!. In previous work (Simard et al., 1992b), we showed how
a neural network could be trained to be invariant with respect to selected transfor-
mations of the input. We now apply similar ideas to distance-based classifiers.

When a pattern P is transformed (e.g. rotated) with a transformation s that depends
on one parameter « (e.g. the angle of the rotation), the set of all the transformed
patterns Sp = {z | 3& such that z = s(&, P)} is a one-dimensional curve in the
vector space of the inputs (see Fig. 2). In certain cases, such as rotations of
digitized images, this curve must be made continuous using smoothing techniques
(see (Simard et al., 1992b)). When the set of transformations is parameterized by
n parameters «; (rotation, translation, scaling, etc.), Sp is a manifold of at most n
dimensions. The patterns in Sp that are obtained through small transformations
of P, i.e. the part of Sp that is close to P, can be approximated by a plane
tangent to the manifold Sp at the point P. Small transformations of P can be
obtained by adding to P a linear combination of vectors that span the tangent
plane (tangent vectors). The images at the bottom of Fig. 2 were obtained by that
procedure. Tangent vectors for a transformation s can easily be computed by finite
difference (evaluating ds(a, P)/0a); more details can be found in (Simard et al.,

1992b; Simard et al., 1992a).

As we mentioned earlier, the Euclidean distance between two patterns P and E
is in general not appropriate because it is sensitive to irrelevant transformations
of P and of E. In contrast, the distance D(£, P) defined to be the minimal dis-
tance between the two manifolds Sp and Sg is truly invariant with respect to the
transformation used to generate Sp and Sg. Unfortunately, these manifolds have
no analytic expression in general, and finding the distance between them is a hard
optimization problem with multiple local minima. Besides, true invariance is not

'If the image of a “3” is translated vertically upward, the middle top pixel will oscillate
from black to white three times.
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Figure 2: Top: Small rotations of an original digitized image of the digit “3”.

Middle: Representation of the effect of the rotation in pixel space (if there were

only 3 pixels). Bottom: Images obtained by moving along the tangent to the

transformation curve for the same original digitized image P by adding various
V.)

amounts («) of the tangent vector (T

necessarily desirable since a rotation of a “6” into a “9” does not preserve the correct
classification.

Our approach consists of approximating the non-linear manifold Sp and Sg by
linear surfaces and computing the distance D(E, P) defined to be the minimum
distance between them. This solves three problems at once: 1) linear manifolds
have simple analytical expressions which can be easily computed and stored, 2)
finding the minimum distance between linear manifolds is a simple least squares
problem which can be solved efficiently and, 3) this distance is locally invariant but
not globally invariant. Thus the distance between a “6” and a slightly rotated “6”
1s small but the distance between a “6” and a “9” is large. The different distances
between P and £ are represented schematically in Fig. 3.

The figure represents two patterns P and E in 3-dimensional space. The manifolds

generated by s are represented by one-dimensional curves going through E and P

respectively. The linear approximations to the manifolds are represented by lines

tangent to the curves at £ and P. These lines do not intersect in 3 dimensions and

the shortest distance between them (uniquely defined) is D(E, P). The distance

1l(tniet.ween the two non-linear transformation curves D(E, P) is also shown on the
gure.

An efficient implementation of the tangent distance D(E, P) will be given in the
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Euclidean distance
between Pand E

Figure 3: Illustration of the Euclidean distance and the tangent distance between

P and F

next section. Although the tangent distance can be applied to any kind of pat-
terns represented as vectors, we have concentrated our efforts on applications to
image recognition. Comparison of tangent distance with the best known competing
method will be described. Finally we will discuss possible variations on the tangent
distance and how it can be generalized to problems other than pattern recognition.

2 IMPLEMENTATION

In this section we describe formally the computation of the tangent distance. Let
the function s which map u, & to s(&,u) be a differentiable transformation of the

input space, depending on a vector & of parameter, verifying s(0, u) = u.

If u is a 2 dimensional image for instance, s(&,u) could be a rotation of u by
the angle & If we are interested in all transformations of images which conserve
distances (isometry), s(&,u) would be a rotation by «, followed by a translation
by ag,ay of the image u. In this case & = (ar, oz, ay) is a vector of parameters of
dimension 3. In general, & = (ao,...,am—-1) is of dimension m.

Since s is differentiable, the set Sy = {z | 3& for which z = s(&, u)} is a differen-
tiable manifold which can be approximated to the first order by a hyperplane T,,.
This hyperplane is tangent to S, at u and is generated by the columns of matrix

I = ds(a@, u) _ [38(&',u) 33(&’,11)] (1)
: a=0

- 8('1. =03 60:0 pse Bam_l

which are vectors tangent to the manifold. If £ and P are two patterns to be
compared, the respective tangent planes Tg and Tp can be used to define a new
distance D between these two patterns. The tangent distance D(E, P) between E
and P is defined by

D(E,P)= i —y||? 2
(BiPje Join. l@-g) (2)

The equation of the tangent planes T and Tp is given by:
E’(d"}_:;) = FE+ Lg@g (3)

P'(@p) = P+ Lpdp (4)
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