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Abstract 

Memory-based classification algorithms such as radial basis func­
tions or K-nearest neighbors typically rely on simple distances (Eu­
clidean, dot product ... ), which are not particularly meaningful on 
pattern vectors. More complex, better suited distance measures are 
often expensive and rather ad-hoc (elastic matching, deformable 
templates). We propose a new distance measure which (a) can be 
made locally invariant to any set of transformations of the input 
and (b) can be computed efficiently. We tested the method on 
large handwritten character databases provided by the Post Office 
and the NIST. Using invariances with respect to translation, rota­
tion, scaling, shearing and line thickness, the method consistently 
outperformed all other systems tested on the same databases. 

1 INTRODUCTION 

Distance-based classification algorithms such as radial basis functions or K-nearest 
neighbors often rely on simple distances (such as Euclidean distance, Hamming 
distance, etc.). As a result, they suffer from a very high sensitivity to simple 
transformations of the input patterns that should leave the classification unchanged 
(e.g. translation or scaling for 2D images). This is illustrated in Fig. 1 where an 
unlabeled image of a "9" must be classified by finding the closest prototype image 
out of two images representing respectively a "9" and a "4". According to the 
Euclidean distance (sum of the squares of the pixel to pixel differences), the "4" 
is closer even though the "9" is much more similar once it has been rotated and 
thickened. The result is an incorrect classification. The key idea is to construct a 
distance measure which is invariant with respect to some chosen transformations 
such as translation, rotation and others. The special case of linear transformations 
has been well studied in statistics and is sometimes referred to as Procrustes analysis 
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prototype A Prototype B 

Figure 1: What is a good similarity measure? According to the Euclidean distance 
the pattern to be classified is more similar to prototype B. A better distance measure 
would find that prototype A is closer because it differs mainly by a rotation and a 
thickness transformation, two transformations which should leave the classification 
invariant. 

(Sibson, 1978). It has been applied to on-line character recognition (Sinden and 
Wilfong, 1992). 

This paper considers the more general case of non-linear transformations such as 
geometric transformations of gray-level images. Remember that even a simple 
image translation corresponds to a highly non-linear transformation in the high­
dimensional pixel space l . In previous work (Simard et al., 1992b), we showed how 
a neural network could be trained to be invariant with respect to selected transfor­
mations of the input. VVe now apply similar ideas to distance-based classifiers. 

''''hen a pattern P is transformed (e.g. rotated) with a transformation s that depends 
on one parameter a (e.g. the angle of the rotation), the set of all the transformed 
patterns Sp = {x I 35 such that x = s(5, P)} is a one-dimensional curve in the 
vector space of the inputs (see Fig. 2). In certain cases, such as rotations of 
digitized images, this curve must be made continuous using smoothing techniques 
(see (Simard et al., 1992b)). When the set of transformations is parameterized by 
n parameters ai (rotation, translation, scaling, etc.), Sp is a manifold of at most n 
dimensions. The patterns in Sp that are obtained through small transformations 
of P, i.e. the part of Sp that is close to P, can be approximated by a plane 
tangent to the manifold Sp at the point P. Small transformations of P can be 
obtained by adding to P a linear combination of vectors that span the tangent 
plane (tangent vectors). The images at the bottom of Fig. 2 were obtained by that 
procedure. Tangent vectors for a transformation s can easily be computed by finite 
difference (evaluating os(a, P)/oa); more details can be found in (Simard et al., 
1992b; Simard et al., 1992a). 

As we mentioned earlier, the Euclidean distance between two patterns P and E 
is in general not appropriate because it is sensitive to irrelevant transformations 
of P and of E. In contrast, the distance V(E, P) defined to be the minimal dis­
tance between the two manifolds Sp and SE is truly invariant with respect to the 
transformation used to generate Sp and SE. Unfortunately, these manifolds have 
no analytic expression in general, and finding the distance between them is a hard 
optimization problem with multiple local minima. Besides, t.rue invariance is not 

1 If the ima.ge of a "3" is translated vertica.lly upward, the middle top pixel will oscillate 
from black to white three times. 
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Figure 2: Top: Small rotations of an original digitized image of the digit "3". 
Middle: Representation of the effect of the rotation in pixel space (if there were 
only 3 pixels). Bottom: Images obtained by moving along the tangent to the 
transformation curve for the same original digitized image P by adding various 
amounts (a) of the tangent vector (T.V.). 

necessarily desirable since a rotation of a "6" into a "9" does not preserve the correct 
classification. 

Our approach consists of approximating the non-linear manifold Sp and SE by 
linear surfaces and computing the distance D( E, P) defined to be the minimum 
distance between them. This solves three problems at once: 1) linear manifolds 
have simple analytical expressions which can be easily computed and stored, 2) 
finding the minimum distance between linear manifolds is a simple least squares 
problem which can be solved efficiently and, 3) this distance is locally invaria.nt but 
not globally invariant. Thus the distance between a "6" and a slightly rota.ted "6" 
is small but the distance between a "6" and a "9" is la.rge. The different. distan ces 
between P and E are represented schematically in Fig. 3. 

The figure represents two patterns P and E in 3-dimensional space. The ma.nifolds 
generated by s are represented by one-dimensional curves going through E and P 
respectively. The linear approximations to the manifolds are represented by lines 
tangent to the curves at E and P. These lines do not intersect in 3 dimensions and 
the shortest distance between them (uniquely defined) is D(E, P). The distance 
between the two non-linear transformation curves VeE, P) is also shown on the 
figure. 

An efficient implementation of the tangent distance D(E, P) will be given in the 
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Figure 3: Illustration of the Euclidean distance and the tangent distance between 
P and E 

next section. Although the tangent distance can be applied to any kind of pat­
terns represented as vectors, we have concentrated our efforts on applications to 
image recognition. Comparison of tangent distance with the best known competing 
method will be described. Finally we will discuss possible variations on the tangent 
distance and how it can be generalized to problems other than pattern recognition. 

2 IMPLEMENTATION 

In this section we describe formally the computation of the tangent distance. Let 
the function s which map u, a to s(a, u) be a differentiable transformation of the 
input space, depending on a vector a of parameter, verifying s(O, u) = 'It. 

If u is a 2 dimensional image for instance, s(a, u) could be a rotation of u by 
the angle &. If we are interested in all transformations of images which conserve 
distances (isometry), 8(a, u) would be a rotation by a r followed by a translation 
by ax, a y of the image u. In this case & = (ar , ax, a y) is a vector of parameters of 
dimension 3. In general, & = (ao, .. " am-d is of dimension m. 

Since 8 is differentiable, the set Stl. = {x I 3a for which x = 8( a, 'It)} is a differen­
tiable manifold which can be approximated to the first order by a hyperplane Ttl.. 
This hyperplane is tangent to Stl. at u and is generated by the columns of matrix 

Ltl. = 08(&~ 'It) I = [08(&, u), ... , 08(a, U)] (1) 
aa d=cf oao aam-l d=O 

which are vectors tangent to the manifold. If E and P are two patterns to be 
compared, the respective tangent planes TE and Tp can be used to define a new 
distance D between these two patterns. The tangent distance D(E, P) between E 
and P is defined by 

D(E, P) = min IIx - yW (2) 
xETE,yETp 

The equation of the tangent planes TE and Tp is given by: 

(3) 

(4) 
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where LE and Lp are the matrices containing the tangent vectors (see Eq. 1) and 
the vectors aE and ap are the coordinates of E' and P' in the corresponding tangent 
planes. The quantities LE and Lp are attributes of the patterns so in many cases 
they can be precomputed and stored. 

Computing the tangent distance 

(5) 

amounts to solving a linear least squares problem. The optimality condition is that 
the partial derivatives of D(E, P) with respect to ap and aE should be zero: 

�o�D�(�~�,� P) = 2(E'(aE) _ p'(ap» T LE = 0 
oaE 

�o�D�(�~�,�P�)� = 2(p'(ap) _ E'(aE»T Lp = 0 
oap 

(6) 

(7) 

Substituting E' and P' by their expressions yields to the following linear system of 
equations, which we must solve for ap and ilE: 

L;(E - P - Lpilp + LEaE) = 0 

Lf(E - P - Lpap + LEilE) = 0 

The solution of this system is 

�(�L�P�E�L�"�E�1�L�~� - L;)(E - P) = (LPEL"E1LEP - Lpp )ap 

�(�L�E�P�L�p�~�L�;� - �L�~�)�(�E� - P) = (LEE - �L�E�P�L�p�~�L�p�E�)�a�E� 

(8) 

(9) 

(10) 

(11) 

where LEE = LfT LE, LpE = �L�~�L�E�'� LEP = �L�~�L�p� and Lpp = �L�~�L�p�.� LU 
decompositions 0 LEE and Lpp can be precomputed. The most expenSIve part in 
solving this system is evaluating LEP (LPE can be obtained by transposing LEP). 
It requires mE x mp dot products, where mE is the number of tangent vectors for E 
and mp is the number of tangent vectors for P. Once LEP has been computed, ilp 
and ilE can be computed by solving two (small) linear system of respectively mE and 
mp equations. The tangent distance is obtained by computing IIE'(aE) - p'(ap )11 
using the value of ap and ilE in equations 3 and 4. If n is the length of vector E (or 
P), the algorithm described above requires roughly �n�(�m�E�+�l�)�(�m�p�+�l�)�+�3�(�m�~�+�m�~�)� 
multiply-adds. Approximations to the tangent distance can be computed more 
efficiently. 

3 RESULTS 

Before giving the results of handwritten digit recognition experiments, we would 
like to demonstrate the property of "local invariance" of tangent distance. A 16 by 
16 pixel image similar to the "3" in Fig 2 was translated by various amounts. The 
tangent distance (using the tangent vector corresponding to horizonta.l translations) 
and the Euclidean Distance between the original image and its translated version 
were measured as a function of the size k (in pixels) of the translation. The result 
is plotted in Fig. 4. It is clear that the Euclidean Distance starts increasing linearly 
with k while the tangent distance remains very small for translations as large as 
two pixels. This indicates that, while Euclidean Distance is not invariant to trans­
lation, tangent distance is locally invariant. The extent of the invariance can be 










