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Abstract 

The bootstrap algorithm is a computational intensive procedure to 
derive nonparametric confidence intervals of statistical estimators 
in situations where an analytic solution is intractable. It is ap­
plied to neural networks to estimate the predictive distribution for 
unseen inputs. The consistency of different bootstrap procedures 
and their convergence speed is discussed. A small scale simulation 
experiment shows the applicability of the bootstrap to practical 
problems and its potential use. 

1 INTRODUCTION 

Bootstrapping is a strategy for estimating standard errors and confidence intervals 
for parameters when the form of the underlying distribution is unknown. It is 
particularly valuable when the parameter of interest is a complicated functional 
of the true distribution. The key idea first promoted by Efron (1979) is that the 
relationship between the true cumulative distribution function (cdf) F and the 
sample of size n is similar to the relationship between the empirical cdf Fn and 
a secondary sample drawn from it. So one uses the primary sample to form an 
estimate Fn and calculates the sampling distribution of the parameter estimate 
under Fn. This calculation is done by drawing many secondary samples and finding 
the estimate, or function of the estimate, for each. If:Fn is a good approximation 
of F, then H n , the sampling distribution of the estimate under Fn , is a generally 
good approximation to the sampling distribution for the estimate under F. H n is 
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called the bootstrap distribution of the parameter. Introductory articles are Efron 
and Gong (1983) and Efron and Tibshirani (1986). For a survey of bootstrap results 
see Hinkley (1988) and DiCiccio and Romano (1988). 

A neural networks often may be considered as a nonlinear or nonparametric regres­
sion model 

Z = g/3(Y) + € (1) 

which d~fines the relation between the vectors Y and z of input and output variables. 
The ter:n € can be interpreted as a random 'error' and the function g/3 depends on 
some Ul_kown parameter f3 which may have infinite dimension. Usually the network 
is used to determine a prediction Zo = g/3(Yo) for some new input vector Yo. If the 
data is a random sample, an estimate P differs from the true value of f3 because of 
the sampling error and consequently the prediction g~(yo) is different from the true 
prediction. In this paper the bootstrap approach is used to approximate a sampling 
distribution of the prediction (or a function thereof) and to estimate parameters 
of that distribution like its mean value, variance, percentiles, etc. Bootstrapping 
procedures are closely related to other resampling methods like cross validation and 
jackknife (Efron 1982). The jackknife can be considered as a linear approximation 
to the bootstrap (Efron, Tibshirani 1986). 

In the next section different versions of the bootstrap procedure for feedforward 
neural networks are defined and their theoretical properties are reviewed. Main 
points are the convergence of the bootstrap distribution to true theoretical distri­
bution and the speed of that convergence. In the following section the results of a 
simulation experiment for a simple backprop model are reported and the applica­
tion of the bootstrap to model selection is discussed. The final section gives a short 
summary. 

2 CONSISTENCY OF THE BOOTSTRAP FOR 
FEEDFORWARD NEURAL NETWORKS 

Assume X (n) := (Xl, ... , xn) is the available independent, identically distributed 
(iid) sample from an underlying cdf F where Xi = (Zi' Yi) and Fn is the correspond­
ing empirical cdf. For a given Yo let T} = T}(g/3(Yo)) be a parameter of interest of the 
prediction, e.g. the mean value of the prediction of a component of Z for Yo. 

The pairwise bootstrap algorithm is an intuitive way to apply the bootstrap notion to 
regression. It was proposed by Efron (1982) and involves the independent repetition 
of following steps for b = 1, ... , B. 

1. A sample XbCn) of size n is generated from Fn. Notice that this amounts 
to the random selection of n elements from X(n) with replacement. 

2. An estimate TJb is determined from X;(n). 

The resulting empirical cdf of the TJb, b = 1, ... ,n is denoted by H B and approxi­
mates the sampling distribution for the estimate TJ under Fn. The standard devia­
tion of HE is an estimate of the standard error of T}(Fn) , and [Hnl(a), Hn 1(1- a)] 
is an approximate (1 - 2a) central confidence interval. 
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In general two conditions are necessary for the bootstrap to be consistent: 

• The estimator, e.g. fib has to be consistent . 

• The functional which maps F to HB has to be smooth. 

This requirement can be formalized by a uniform weak convergence condition (Di­
Ciccio, Romano 1988). Using these concepts Freedman (1981) proved that for the 
parameters of a linear regression model the pairwise bootstrap procedure is con­
sistent, i.e. yields the desired limit distribution for n, B --+ 00. Mammen (1991) 
showed that this also holds for the preuictive distribution of a linear model (i.e. 
linear contrasts). These results hold even if the errors are heteroscedastic, i.e. if 
the distribution of fi depends on the value of Yi. 

The performance of the bootstrap for linear regression is extensively discussed by 
Wu (1986). It turns out that the small sample properties can be different from 
the asymptotic relations and the bootstrap may exhibit a sizeable bias. Various 
procedures of bias correction have been proposed (DiCiccio, Romano 1988). Beran 
(1990) discusses a calibrated bootstrap prediction region containing the prediction 
g,6(YO)+f with prescribed probability a. It requires a sequence of nested bootstraps. 
Its coverage probability tends to a at a rate up to n-2 • Note that this procedure can 
be applied to nonlinear regression models (1) with homoscedastic errors (Example 
3 in Beran (1990, p.718) can be extended to this case). 

Biases especially arise if the errors are heteroscedastic. Hinkley (1988) discusses the 
parametric modelling of dependency of the error distribution (or its variance) from 
Y and the application of the bootstrap algorithm using this model. The problem is 
here to determine this parametric dependency from the data. As an alternative Wu 
(1986) and Liu (1988) take into account heteroscedasticity in a nonparametric way. 
They propose the following wild bootstrap algorithm which starts with a consistent 
estimate /3 based on the sample X(n). Then the set of residuals (i l , ... ,in) with 
fi := Zi - g~(yd is determined. The approach attempts to mimic the conditional 

distribution of Z given Yi in a very crude way by defining a distribution Oi whose 
first three moments coincide with the observed residual fi: 

J udOj(u) = 0 J u2 dOi (u) = f; J u3dOi (u) = f~ (2) 

Two point distributions are used which are uniquely defined by this requirement 
(Mammen 1991, p.121). Then the following steps are repeated for b = 1, ... , B: 

1. Independently generate residuals fi according to Oi and generate observa­
tions z; := 9p(Yi) + fi for i = (1, ... , n). This yields a new sample X;(n) 
of size n. 

2. An estimate fit is determined from Xb(n). 

The resulting empirical cdf of the fit is then taken as the bootstrap distribution 
H B which approximates the sampling distribution for the estimate fI under Fn. 
Mammen (1991, p.123) shows that this algorithm is consistent for the prediction of 
linear regression models if the least square estimator or M-estimators are used and 
discusses the convergence speed of the procedure. 
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The bootstrap may also be applied to nonparameric regression models like kernel­
type estimators of the form 

g(y) = [g?~:~~(~lJ (3) 

with kernel [{ and bandwidth h. These models are related to radial basis functions 
discussed in the neural network literature. For those models the pairwise bootstrap 
does not work (HardIe, Mammen 1990) as the algorithm is not forced to perform 
locall:J., ~raging. To account for heteroscedasticity in the errors of (1) HardIe (1990, 
p.103) advocates the use of the wild bootstrap algorithm described above. Under 
some regularity conditions he shows the convergence of the bootstrap distribution 
of the kernel estimator to the correct limit distribution. 

To summarize the bootstrap often is used simply because an analytic derivation of 
the desired sampling distribution is too complicated. The asymptotic investigations 
offer two additional reasons: 

• There exist versions of the bootstrap algorithm that have a better rate of 
convergence than the usual asymptotic normal approximation. This effect 
has been extensively discussed in literature e.g. by Hall (1988), Beran 
(1988), DiCiccio and Romano (1988, p.349), Mammen (1991, p.74). 

• There are cases where the bootstrap works, even if the normal approxima­
tion breaks down. Bickel and Freedman (1983) for instance show, that the 
bootstrap is valid for linear regression models in the presence of outliers and 
if the number of parameters changes with n. Their results are discussed 
and extended by Mammen (1991, p.88ff). 

3 SIMULATION EXPERIMENTS 

To demonstrate the performance of the bootstrap for real real problems we inves­
tigated a small neural network. To get a nonlinear situation we chose a "noisy" 
version of the xor model with eight input units YI, ... ,Ys and a single output unit 
z. The input variables may take the values 0 and 1. The output unit of the true 
model is stochastic. It takes the values 0.1 and 0.9 with the following probabilities: 

p(y = 0.9) = 0.9 if Xl + X2 + X3 + X4 < 3 and X5 + X6 + X7 + Xs < 3 
p(y = 0.9) = 0.1 if Xl + X2 + X3 + X4 < 3 and X5 + X6 + X7 + Xs > 3 
p(y = 0.9) = 0.1 if Xl + X2 + X3 + X4 > 3 and X5 + X6 + X7 + XS < 3 
p(y = 0.9) = 0.9 if Xl + X2 + X3 + X4 > 3 and X5 + X6 + X7 + Xs > 3 

In contrast to the simple xor model generalization is possible in this setup. We 
generated a training set X( n) of n = 100 inputs using the true model. 

We used the pairwise bootstrap procedure described above and generated B = 30 
different bootstrap samples X;(n) by random selection from X(n) with replace­
ment. This number of bootstrap samples is rather low and only will yield reliable 
information on the central tendency of the prediction. More sensitive parameters of 
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Figure 1: Box-Plots of the Bootstrap Predictive Distribution for a Series 
of Different Input Vectors 

the distribution like low percentiles and the standard deviation can be expected to 
exhibit larger fluctuations. We estimated 30 weight vectors ~b from those samples 
by the backpropagation method with random initial weights. Subsequently for each 
of the 256 possible input vectors Yi we determined the prediction g~1> (Yi) yielding 
a predictive distribution. For comparison purposes we also estimated the weights 
of the original backprop model with the full data set X (n) and the corresponding 
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Table 1: Mean Square Deviation from the True Prediction 

INPUT HIDDEN MEAN SQUARE DIFFERENCE 
TYPE UNITS BOOTSTRAP DB FULL DATA DF 

training 2 0.18 0.19 
inputs 3 0.17 0.19 

4 0.17 0.19 

ne I-training 2 0.30 0.34 
inputs 3 0.35 0.38 

4 0.37 0.42 

Table 2: Coverage Probabilities of the Bootstrap Confidence Interval for Prediction 

HIDDEN 
UNITS 

2 
3 
4 

predictions. 

FRACTION OF CASES WITH TRUE PREDICTION IN 
[q2S, q7S] [q10, qgo] 

0.47 
0.44 
0.43 

0.77 
0.70 
0.70 

For some of those input vectors the results are shown in figure 1. The distributions 
differ greatly in size and form for the different input vectors. Usually the spread 
of the predictive distribution is large if the median prediction differs substantially 
from the true value. This reflects the situation that the observed data does not have 
much information on the specific input vector. Simply by inspecting the predictive 
distribution the reliability of a predictions may be assessed in a heuristic way. This 
may be a great help in practical applications. 

In table 1 the mean square difference DB := (~L:~=1 (Zi - qSo)2) 1/2 between the 
true prediction Zi and the median qso of the bootstrap predictive distribution is 
compared to the mean square difference Ds := (1. L:?=l(Zi - Zi,F)2)1/2 between 
the true prediction and the value Zi,F estimated with full data backprop model. For 
the non-training inputs the bootstrap median has a lower mean deviation from the 
true value. This effect is a real practical advantage and occurs even for this simple 
bootstrap procedure. It may be caused in part by the variation of the initial weight 
values (cf. Pearlmutter, Rosenfeld 1991). The utilization of bootstrap procedures 
with higher order convergence has the potential to improve this effect. 

Table 2 list the fraction of cases in the full set of all 256 possible inputs where the 
true value is contained in the central 50% and 80% prediction interval. Note that 
the intervals are based on only 30 cases. For the correct model with 2 hidden units 
the difference is 0.03 which corresponds to just one case. Models with more hidden 
units exhibit larger fluctuations. To arrive at more reliable intervals the number of 
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HIDDEN 
UNITS 

2 
3 
4 

Table 3: Spread of the Predictive Distribution 

MEAN INTERQUARTILE RANGE FOR 
TRAINING INPUTS NON-TRAINING INPUTS 

0.13 
0.11 
0.11 

0.29 
0.35 
0.37 

bootstrap samples has to be increased by an order of magnitude. 

If we use a model with more than two hidden units the fit to the training sam­
ple cannot be improved but remains constant. For nontraining inputs, however, 
the predictions of the model deteriorate. In table 1 we see that the mean square 
deviation from the true prediction increases. This is just a manifestation of 'Oc­
cam's razor' which states that unnecessary complex models should not be prefered 
to simpler ones (MacKay 1992). Table 3 shows that the spread of the predictive 
distribution is increased for non-training inputs in the case of models with more 
than two hidden units. Therefore Occam's razor is supported by the bootstrap 
predictive distribution without knowing the correct prediction. 

This effect shows that bootstrap procedures may be utilized for model selection. 
Analoguous to Liu (1993) we may use a crossvalidation strategy to determine the 
prediction error for the bootstrap estimate ~b for sample elements of X (n) which 
are not contained in the bootstrap sample X; (n). In a similar way Efron (1982, 
p.52f) determines the error for the predictions g~b(Y) within the full sample X(n) 
and uses this as an indicator of the model performance. 

4 SUMMARY 

The bootstrap method offers an computation intensive alternative to estimate the 
predictive distribution for a neural network even if the analytic derivation is in­
tractable. The available asymptotic results show that it is valid for a large number 
of linear, nonlinear and even nonparametric regression problems. It has the po­
tential to model the distribution of estimators to a higher precision than the usual 
normal asymptotics. It even may be valid if the normal asymptotics fail. However, 
the theoretical properties of bootstrap procedures for neural networks - especially 
nonlinear models - have to be investigated more comprehensively. In contrast to 
the Bayesian approach no distributional assumptions (e.g. normal errors) are have 
to be specified. The simulation experiments show that bootstrap methods offer 
practical advantages as the performance of the model with respect to a new input 
may be readily assessed. 
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