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Abstract

We present a novel classification and regression method that com-
bines exploratory projection pursuit (unsupervised training) with pro-
jection pursuit regression (supervised training), to yield a new family of
cost/complexity penalty terms. Some improved generalization properties
are demonstrated on real world problems.

1 Introduction

Parameter estimation becomes difficult in high-dimensional spaces due to the in-
creasing sparseness of the data. Therefore, when a low dimensional representation
is embedded in the data., dimensionality reduction methods become useful. One
such method - projection pursuit regression (IFriedman and Stuetzle, 1981) (PPR)
is capable of performing dimensionality reduction by composition, namely, it con-
structs an approximation to the desired response function using a composition of
lower dimensional smooth functions. These functions depend on low dimensional
projections through the data.
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When the dimensionality of the problem is in the thousands, even projection pur-
suit methods are almost always over-parametrized, therefore, additional smoothing
is needed for low variance estimation. Exploratory Projection Pursuit (Friedman
and Tukey, 1974; Friedman, 1987) (EPP) may be useful for that. It searches in a
high dimensional space for structure in the form of (semi) linear projections with
constraints characterized by a projection index. The projection index may be con-
sidered as a universal prior for a large class of problems, or may be tailored to a
specific problem based on prior knowledge.

In this paper, the general form of exploratory projection pursuit is formulated to be
an additional constraint for projection pursuit regression. In particular, a hybrid
combination of supervised and unsupervised artificial neural network (ANN) is de-
scribed as a special case. In addition, a specific projection index that is particularly
useful for classification (Intrator, 1990; Intrator and Cooper, 1992) is introduced in
this context. A more detailed discussion appears in Intrator (1993).

2 Brief Description of Projection Pursuit Regression

Let (X,Y') be a pair of random variables, X' € R and ¥ € R. The problem is to
approximate the d dimensional surface

f(z) = E[Y|X = 2]
from n observations (z1,y1),...,(Zn, Yn)-

PPR tries to approximate a function f by a sum of ridge functions (functions that
are constant along lines)

fl) =) gjta] ).
jeit

The fitting procedure alternates between an estimation of a direction @ and an
estimation of a smooth function g, such that at iteration j, the square average of
the residuals

rijles) =rij-1 = _(}j((i.?‘a:,-)
is minimized. This process is initialized by setting r;p = y;. Usually, the initial
values of a; are taken to be the first few principal components of the data.

Estimation of the ridge functions can be achieved by various nonparametric smooth-
ing techniques such as locally linear functions (Friedman and Stuetzle, 1981),
k-nearest neighbors (Hall, 1989b), splines or variable degree polynomials. The
smoothness constraint imposed on g, implies that the actual projection pursuit
1s achieved by minimizing at iteration j, the sum

Y i) + Clgs).

p=1]
for some smoothness measure C.

Although PPR converges to the desired response function (Jones, 1987), the use
of non-parametric function estimation is likely to lead to overfitting. Recent re-
sults (Hornik, 1991) suggest. that a feed forward network architecture with a single
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hidden layer and a rather general fixed activation function is a universal approxi-
mator. Therefore, the use of a non-parametric single ridge function estimation can
be avoided. It is thus appropriate to concentrate on the estimation of good pro-
Jections. In the next section we present a general framework of PPR architecture,
and in section 4 we restrict it to a feed-forward architecture with sigmoidal hidden
units.

3 Estimating The Projections Using Exploratory
Projection Pursuit

Exploratory projection pursuit-is based on seeking interesting projections of high
dimensional data points (Kruskal, 1969; Switzer, 1970; Kruskal, 1972; Friedman
and Tukey, 1974; Friedman, 1987; Jones and Sibson, 1987; Hall, 1988; Huber, 1985,
for review). The notion of interesting projections is motivated by an observation
that for most high-dimensional data clouds, most low-dimensional projections are
approximately normal (Diaconis and Freedman, 1984). This finding suggests that
the important information in the data is conveyed in those directions whose single
dimensional projected distribution is [ar from Gaussian. Various projection indices
(measures for the goodness of a projection) differ on the assumptions about the
nature of deviation from normality, and in their computational efficiency. They can
be considered as different priors motivated by specific assunmiptions on the underlying
model.

To partially decouple the search for a projection vector from the search for a non-
parametric ridge function, we propose to add a penalty term, which is based on
a projection index, to the energy minimization associated with the estimation of
the ridge functions and the projections. Specifically, let p(a) be a projection index
which is minimized for projections with a certain deviation from normality; At the
j’th iteration, we minimize the sum

D rile) +Cg;) + plaj).

1

When a concurrent minimization over several projections/functions is practical, we
get a penalty term of the form

B(f) =) _[C(g;) + pla;)]-
J

Since C and p may not be linear, the more general measure that does not assume a
stepwise approach, but instead seeks [ projections and ridge functions concurrently,
is given by _

B(f)y=Clg1.--..q¢t) + play, ..., a1),
In practice, p depends implicitly on the training data, (the empirical density) and
is therefore replaced by its empirical measure p.

3.1 Some Possible Measures

Some applicable projection indices are discussed in (Huber, 1985; Jones and Sib-
son, 1987; Friedman, 1987; Hall, 1989a; Intrator, 1990). Probably, all the possible
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measures should emphasize some form of deviation from normality but the spe-
cific type may depend on the problem at hand. For example, a measure based
on the Karhunen Loéve expansion (Mougeot et al., 1991) may be useful for image
compression with autoassociative networks, since in this case one is interested in
minimizing the L? norm of the distance between the reconstructed image and the
original one, and under mild conditions, the Karhunen Loéve expansion gives the
optimal solution.

A different type of prior knowledge is required for classification problems. The
underlying assumption then is that the data is clustered (when projecting in the
right directions) and that the classification may be achieved by some (nonlinear)
mapping of these clusters. In such a case, the projection index should emphasize
multi-modality as a specific deviation from normality. A projection index that em-
phasizes multimodalities in the projected distribution (without relying on the class
labels) has recently been introduced (Intrator, 1990) and implemented efficiently us-
ing a variant of a biologically motivated unsupervised network (Intrator and Cooper,
1992). Its integration into a back-propagation classifier will be discussed below.

3.2 Adding EPP constraints to back-propagation network

One way of adding some prior knowledge into the architecture is by minimizing
the effective number of parameters using weight sharing, in which a single weight
is shared among many connections in the network (Waibel et al., 1989; Le Cun
et al., 1989). An extension of this idea is the “soft weight sharing” which favors
irregularities in the weight distribution in the form of multimodality (Nowlan and
Hinton, 1992). This penalty improved generalization results obtained by weight
elimination penalty. Both these mmethods make an explicit assumption about the
structure of the weight space, but with no regard to the structure of the input space.

As described in the context of projection pursuit regression, a penalty term may
be added to the energy functional minimized by error back propagation, for the
purpose of measuring directly the goodness of the projections songht by the network.
Since our main interest is in reducing overfitting for high dimensional problems, our
underlying assumption is that tie surface function to be estimated can be faithfully
represented using a low dimensional composition of sigmoidal functions, namely,
using a back-propagation network in which the number of hidden units is much
smaller than the number of input units. Therefore, the penalty term may be added
only to the hidden layer. The synaptic modification equations of the hidden units’
weights become

aw‘.j 3 [88(11:‘ r)
ot - ¢ Qwi;
ap(wy, . ... wy)
+ r3w,-j

+(Contribution of cost/complexity t-ernls)].

An approach of this type has been used in image compression, with a penalty
aimed at minimizing the entropy of the projected distribution (Bichsel and Seitz,
1989). This penalty certainly measures deviation from normality, since entropy is
maximized for a Gaussian distribution.
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4 Projection Index for Classification: The Unsupervised
BCM Neuron

Intrator (1990) has recently shown that a variant of the Bienenstock, Cooper and
Munro neuron (Bienenstock et al., 1982) performs exploratory projection pursuit
using a projection index that measures multi-modality. This neuron version allows
theoretical analysis of some visual deprivation experiments (Intrator and Cooper,
1992), and is in agreement with the vast experimental results on visual cortical
plasticity (Clothiaux et al., 1991). A network implementation which can find several
projections in parallel while retaining its computational efficiency, was found to be
applicable for extracting features from very high dimensional vector spaces (Intrator
and Gold, 1993; Intrator et al., 1991; Intrator, 1992)

The activity of neuron k in the network is cx = ) ; zjwir + wor. The inhibited
activity and threshold of the k’th neuron is given by

¢ =o(cr — I)ZC_; Y éfn = E[é%]
j#k

The threshold ©¥, is the point at which the modification function ¢ changes sign

(see Intrator and Cooper, 1992 for further details). The function ¢ is given by
¢(c,0,,) = c{e — Op).

The risk (projection index) for a single neuron is given by
|
R(w) = —{3 E[&] - 3 E*[E]}-

The total risk is the sumn of each local risk. The negative gradient of the risk that
leads to the synaptic modification equations is given by

611},'3‘

Gy = E[d’(ﬁj ) emj }o'r(EJ )Ii =1 Z ¢(El'! ét: JUI{EL')'I"'.] :

k#j

This last equation is an additional penalty to the energy minimization of the super-
vised network. Note that there is an interaction between adjacent neurons in the
hidden layer. In practice, Lhe stochastic version of the differential equation can be
used as the learning rule.

5 Applications

We have applied this hybrid classification method to various speech and image
recognition problems in high dimensional space. In one speech application we used
voiceless stop consonants extracted from the TIMIT database as training tokens
(Intrator and Tajchman, 1991). A detailed biologically motivated speech represen-
tation was produced by Lyon’s cochlear model (Lyon, 1982; Slaney, 1988). This
representation produced 5040 dimensions (84 channels x 60 time slices). In ad-
dition to an initial voiceless stop, each token contained a final vowel from the set
[aa, ao, er, iy]. Classification of the voiceless stop consonants using a test set that
included 7 vowels [uh. il, eh, ae, al, uw, ow] produced an average error of 18.8%
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while on the same task classification using back-propagation network produced an
average error of 20.9% (a significant difference, P < .0013). Additional experiments
on vowel tokens appear in Tajchman and Intrator (1992).

Another application is in the area of face recognition from gray level pixels (Intrator
et al., 1992). After aligning and normalizing the images, the input was set to 37
x 62 pixels (total of 2294 dimensions). The recognition performance was tested on
a subset of the MIT Media Lab database of face images made available by Turk
and Pentland (1991) which contained 27 face images of each of 16 different persons.
The images were taken under varying illumination and camera location. Of the 27
images available, 17 randomly chosen ones served for training and the remaining
10 were used for testing. Usiug an ensemble average of hybrid networks (Lincoln
and Skrzypek, 1990; Pearlmutter and Rosenfeld, 1991; Perrone and Cooper, 1992)
we obtained an error rate of 0.62% as opposed to 1.2% using a similar ensemble of
back-prop networks. A single back-prop network achieves an error between 2.5% to
6% on this data. The experiments were done using 8 hidden units.

6 Summary

A penalty that allows the incorporation of additional prior information on the un-
derlying model was presented. This prior was introduced in the context of projection
pursuit regression, classification, and in the context of back-propagation network.
It achieves partial decoupling of estimation of the ridge functions (in PPR) or the
regression function in back-propagation net from the estimation of the projections.
Thus it is potentially useful in reducing problems associated with overfitting which
are more pronounced in high dimensional data.

Some possible projection indices were discussed and a specific projection index that
is particularly useful for classification was presented in this context. This measure
that emphasizes multi-inodality in the projected distribution, was found useful in
several very high dimensional problems.
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