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Abstract 

\Ve present a novel classifica t.ioll and regression met.hod that com­
bines exploratory projection pursuit. (unsupervised traiuing) with pro­
jection pursuit. regression (supervised t.raining), t.o yield a. nev,,' family of 
cost./complexity penalLy terms . Some improved generalization properties 
are demonstrat.ed on real \vorld problems. 

1 Introduction 

Parameter estimat.ion becomes difficult. in high-dimensional spaces due t.o the in­
creasing sparseness of t.he dat.a. Therefore. when a low dimensional representation 
is embedded in t.he da.t.a. dimensionality l'eJuction methods become useful. One 
such met.hod - projection pursuit. regression (Friedman and St.uet.zle, 1981) (PPR) 
is capable of performing dimensionality reduct.ion by composit.ion, namely, it con­
structs an approximat.ion to the desired response function using a composition of 
lower dimensional smooth functions, These functions depend on low dimensional 
projections t.hrough t.he data . 

• Research was support.ed by the N at.ional Science Foundat.ion. the Army Research Of­
fice, and the Office of Naval Researclr . 
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When the dimensionality of the problem is in the thousands, even projection pur­
suit methods are almost alwa.ys over-parametrized, t.herefore, additional smoothing 
is needed for low variance estimation. Explol'atory Projection Pursuit (Friedman 
and Thkey, 1974; Friedman, 1987) (EPP) may be useful for t.hat. It searches in a 
high dimensional space for structure in the form of (semi) linear projections with 
constraints characterized by a projection index. The projection index may be con­
sidered as a universal prior for a large class of problems, or may be tailored t.o a 
specific problem based on prior knowledge. 

In this paper, the general for111 of exploratory projection pursuit is formulated to be 
an additional constraint for projection pUl'suit regression. In particular, a hybrid 
combination of supervised and unsupervised artificial neural network (ANN) is de­
scribed as a special case. In addition, a specific project.ion index that is particularly 
useful for classification (Int.rator, 1990; Intrator and Cooper, 1992) is introduced in 
this context. A more detailed discussion appears in Intrator (1993). 

2 Brief Description of Projection Pursuit Regression 

Let (X, Y) be a pair of random variables, X E Rd , and Y E R. The problem is to 
approximate the d dimensiona.l surfa('e 

I(x) = E[Y'IX = x} 

from n observations (Xl, YI), ... , (Xu, Yn). 

PPR tries t.o approximate a funct.ion 1 by a sum of ridge functions (functions that 
are constant. along lines) 

1(:1') ~ L gj(af x). 
j=l 

The fit.t.ing procedure alt.ernat.es between a.n estimation of a direction a and an 
estimat.ioll of a smoot.h funct.ion g. such that at. iterat.ion j, t.he square average of 
t.he resid uals 

l'ij(xd = 1'ij-l - 9j((IJ xd 
is minimized. This process is init.ialized by setting 1'jO = !Ii. Usually, the initial 
values of aj a.re t.aken to be the first few principal component.s of the data. 

Estimation of the ridge functions call be achieved by various nonparamet.ric smooth­
ing techniques such as locally linear functions (Friedman and Stuetzle, 1981), 
k-nearest neighbors (Hall. 1989b), splines or variable degree polynomials. The 
smoot.hness const.raint. imposed on !1, implies t.hat. t.he actual projection pursuit 
is achieved by minimizing at. it.erat.ioJl j. t.lte sum 

II 

i= 1 

for some smoothness measure C. 

Although PPR cOllverg('s t.o the desired response function (Jones, 1987), the use 
of non-paramet.ric function estimat.ion is likely to lead to ovel'fitt.ing. Recent re­
sults (Hornik, 1991) suggest. that a feed forward net.work archit.ecture with a single 
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hidden layer and a rat.her general fixed activat.ion function is a universal approxi­
mator. Therefore, the use of a non-parametric single ridge function estimation can 
be avoided. It is thus appropriate to concentrate on the est.imation of good pro­
jections. In the next section we present a general framework of PPR architecture, 
and in sect.ion 4 we restrict it. t.o a feed-forward architecture with sigmoidal hidden 
units. 

3 EstiInating The Projections Using Exploratory 
Projection Pursuit 

Explorat.ory projection pursuit ·is based on seeking interesting projections of high 
dimensional data points (Krllskal, 1969; Switzer, 1970; Kruskal, 1972; Friedman 
and Tukey, 1974; Friedman, 1987; Jones and Sibson, 1987; Hall, 1988; Huber, 1985, 
for review). The notion of interesting projections is motivated by an observation 
t.hat for most. high-dimensional data clouds, most low-dimensional projections are 
approximat.ely normal (Oiaconis alld F!'('edlllan, 1984). This finding suggests that 
the important information in the data is conveyed in t.hose direct.ions whose single 
dimensional project.ed dist.ribution is far from Gaussian. Variolls projection indices 
(measures for t.he goodrwss of a. projl-'ction) differ on the assumptions about the 
nature of deviation from norl1lality, (Iud ill their comput.ational efficiency. They can 
be considered as different priOl's mot.ivat.ed by specific assumptions on t.he underlying 
model. 

To partially decouple the search for a projection vectol' from the search for a non­
parametric ridge function, we propose to add a penalty term, which is based on 
a pl'Oject.ion index, t.o t.he energy minimizat.ion associated wit.h the estimation of 
the ridge functions and t.he projections. Specifically, let p( a) be a projection index 
which is minimized for project.ions wit.h a certain deviation fl'0111 normality; At the 
j'th iterat.ion, we minimize the sum 

L 1}( .r;) + (,'(gj) + p(aj). 
i 

When a concurrent minimizat.ion ovet' several project.ions/functions is practical, we 
get a penalty t.erm of t.he form 

B(j) = L[C(gj) + p(aj )]. 
j 

Since C and p may not be linear, t.he more general measure t.hat does not assume a 
step",Tise approach, but. instead seeks I projections and ridge functions concurrently, 
is given by 

B(f) = C(9J," ·,gd + p(a.J, .. . ,ad, 
In practice, p depends implicit.ly 011 t.he t.raining dat.a, (t.he empirical density) and 
is therefore replaced by its empirical measure ii. 

3.1 Some Possible Measures 

Some applicable projection indices are disc.ussed in (Huber, 1985; Jones and Sib­
son, 1987; Friedman, 1987; Hall, 1989a; Intrator, 1990). Probably, a.ll the possible 
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measures should emphasize some form of deviation from normality but the spe­
cific type may depend on the problem at hand. For example, a measure based 
on the Karhunen Loeve expansion O"Iougeot et al., 1991) may be useful for image 
compression with autoassociative net.works, since in this case one is int.erested in 
minimizing the L2 norm of tlH' dist.ance between t.he reconst.ructed image and the 
original one, and under mild condit.ions, t.he Karhunen Loeve expansion gives the 
optimal solution. 

A different type of prior knowledge is required for classificat.ion problems. The 
underlying a'5sumption then is that the data is clustered (when projecting in the 
right direct.ions) and that t.he classification may be achieved by some (nonlinear) 
ma.pping of these clustel·s. In such a case, the projection index should emphasize 
multi-modality as a specific deviation from normality. A projection index that em­
phasizes multimodalities in the projected distribution (without relying on the class 
la.bels) has recently been int.roduced (Intrator, 1990) and implemented efficiently us­
ing a variant of a biologically motivated unsupervised network (Intrat.or and Cooper, 
1992) . Its int.egration into a back-propagat.ion classifier will be discussed below . 

3.2 Adding EPP constraints to baek-propagatioll network 

One way of adding SOllie prior knowledge int 0 the archi t.ecLme is by 111lllll1llZmg 
the effective number of parameters llsing weight. sharing, ill which a single weight 
is shared among many connections in the network (\\'aibel et. al., 1989; Le Cun 
et aI., }989). An ext.f'nsion of t.his idea is the "soft. \',·eight. sharing" which favors 
irregularities in the weight distribution in the form of mult.imodality (Nowlan and 
Hinton, 1992). This penalty improved generalization results obtained by weight 
elimination penalt.y. Bot.h t.hese wet.hods make an explicit. assumption about the 
structure of t.he weight. space, but. wit.h 110 regarJ to the structure of the illput space. 

As described in the context of project.ion pursuit. regression. a penalt.y term may 
be added t.o the energy funct.ional minimized by error back propagation, for the 
purpose of mea<;uring direct.ly t.he goodness of t.he projections sOllght by the network. 
Since our main int.erest. is in reducing ovedHt.ing fOI' high dimensional pl'Oblems, our 
underlying assumpt.ion is t.hat. t.ile slll-faCf.' fUllct.ion to be estirnat.ed can be faithfully 
represented using a low dimensiollal composition of sigmoidal functions, namely, 
using a back-propagation net.work in which t.he number of hidden units is much 
smaller t.han the number of input unit.s. Therefore, t.he penalty term may be added 
only to the hidden layer. The synapt.ic modification equat.ions of the hidden units' 
weights become 

OWij 

fJt 
-c [ot(w, .1') 

aWij 

0P(Wl, .... wn) 
+------

OU'ij 

+(Contrihul,ion of cost/complexity t.erms)]. 

An appl'Oach of t.his type has lWl'1I used in ima.ge compl'cssion, wit.h a penalty 
aimed at minimizing tIl<' ent.ropy of the projected distribution (Bichsel and Seitz, 
1989). This penalt.y eel'tainly measures deviat.ion from normality, since entropy is 
maximized for a Gaussian distribution. 
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4 Projection Index for Classification: The Unsupervised 
BCM Neuron 

Intrator (1990) has recently shown that a variant of the Bienenstock, Cooper and 
Munro neuron (Bienenstock et al., 1982) performs exploratory projection pursuit 
using a projection index that measures multi-modality. This neuron version allows 
theoretical analysis of some visual deprivation experiments (lntrat.or and Cooper, 
1992), and is in agreement. with the vast experimental result.s on visual cortical 
plasticity (Clothiaux et al., 1991). A network implementation which can find several 
projections in parallel while ret.aining its computational efficiency, was found to be 
applicable for extracting features from very high dimensional vector spaces (Intrator 
and Gold, 1993; Int.rator et al., 1991; Intrator, 1992) 

The activity of neuron k in the network is Ck = Li XiWik + WOk. The inhibited 
activity and threshold of the k' th neuron is given by 

C/.: = (1(Ck -II LCj), 
j'f;/.: 

8~ k E[''l] - m = . cj,: . 

The threshold e~~l is the point. at. which the modificat.ion function </J changes sign 
(see Intrator and Cooper, 1992 for further det.ails) . The function </J is given by 

</J(c, 8/11} = c(c - 8 m }. 

The risk (projection index) for a single neuron is given by 

R( Wk) = -{ ~ E[c2] - ~ E2(c~]}. 
The total risk is the sum of each local risk. The negative gradient. of the risk that 
leads to the synaptic modification equations is given by 

OWjj E[A..( - 8 j} '( ~ ) ~ A.( ~ 8-k) '( -) ] at = IJ) Cj, - m (1 Cj l!j - 11 L <p Cl', - III (1 Ck Xi . 

k'f;j 

This last equa.tion is an a.dditional pellalt.y to t.he energy minimizat.ion of the super­
vised net.work . Not.e that there is an int.eract.ion between adjacent neurons in the 
hidden layer. In practice, t.he st.ochast.ic version of t.he different.ial equat.ion can be 
used as the learning ntle. 

5 Applications 

Vve have applied t.his hybrid classification met.hod to various speech and image 
recognition problems in high dimensional space. In one speech application we used 
voiceless stop consonant.s extracted from the TIMIT database as training tokens 
(Intrator and Tajchman, 1991). A det.ailed biologically motivated speech represen­
tation was produced by Lyoll's cochlear model (Lyon, 1982; Slaney, 1988). This 
representation produced 5040 dimensions (84 channels x 60 t.ime slices) . In ad­
dition t.o an init.ial voiceless st.op, each t.oken cont.ained a final vowel from the set 
[aa, ao, er, iy]. Classificat.ion of t.he voiceless stop consonant.s using a test set that 
included 7 vowels [uh, ih, eh, ae, ah, uw, ow] produced an average error of 18.8% 
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while on the same task classification using back-propagation network produced an 
average error of 20.9% (a significant difference, P < .0013). Addit.ional experiments 
on vowel tokens appear in Tajchman and Intrator (1992). 

Another application is in the area of face l·ecognit.ion from gray level pixels (Intrator 
et al., 1992) . After aligning and normalizing the images, the input was set to 37 
x 62 pixels (total of 2294 dimensions). The recognition performance was tested on 
a subset of t.he MIT Media Lab database of face images made available by Turk 
and Pent.land (1991) which cont.ained 27 face images of each of 16 different persons. 
The images were taken under val'ying illumiuation and camera location . Of the 27 
images available, 17 randomly chosen ones served for tl'aining and the remaining 
10 were used for test.iug , U siug all ensemble average of hybrid networks (Lincoln 
and Skrzypek, 1990; Pearlmut.t.er and Rosenfeld, 1991; Perrone and Cooper, 1992) 
we obtained an errOl' rat.e of 0.62% as opposed to 1.2% using a similar ensemble of 
back-prop networks. A single back-prop network achieves an error between 2.5% to 
6% on this data . The experiments were done using 8 hidden units, 

6 SUl11l11ary 

A penalty that allows the incol'porat.ioll of additional prior information on the un­
derlying model was presC'llt.ed. This prior was introduced in t.he context of projection 
pursuit regression, classificat.ioll, aud in the context of back-propagation network. 
It achieves pa.rt.ial decoupling of est.illIat.ion of t.he ridge fuuctions (in PPR) or the 
regression function in back-propagat.ion net. from t.he est.imatioll of t.he projections, 
Thus it is potentially useful in reducing problems associat.ed wit.h overfitting which 
are more pronounced in high dimensional dat.a. 

Some possible projection indices were discllssed and a specific projection index that 
is particula.rly useful for classificat.ion was pt'esented in this ('on text. This measure 
that emphasizes multi-modality in the projected distribut.ioll, was found useful in 
several very high dimensional problems . 
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