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Abstract 

A novel segmentation algorithm has been developed utilizing an absolute­
value smoothness penalty instead of the more common quadratic regu­
larizer. This functional imposes a piece-wise constant constraint on the 
segmented data. Since the minimized energy is guaranteed to be convex, 
there are no problems with local minima and no complex continuation 
methods are necessary to find the unique global minimum. By interpret­
ing the minimized energy as the generalized power of a nonlinear resistive 
network, a continuous-time analog segmentation circuit was constructed. 

1 INTRODUCTION 

Analog hardware has obvious advantages in terms of its size, speed, cost, and power 
consumption. Analog chip designers, however, should not feel constrained to map­
ping existing digital algorithms to silicon. Many times, new algorithms must be 
adapted or invented to ensure efficient implementation in analog hardware. Novel 
analog algorithms embedded in the hardware must be simple and obey the natural 
constraints of physics. Much algorithm intuition can be gained from experimenting 
with these continuous-time nonlinear systems. For example, the algorithm described 
in this paper arose from experimentation with existing analog segmentation hard­
ware. Surprisingly, many of these "analog" algorithms may prove useful even if a 
computer vision researcher is limited to simulating the analog hardware on a digital 
computer [7] . 

... A portion of this work is part. of a Ph.D dissertation at Caltech [7]. 
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2 ABSOLUTE-VALUE SMOOTHNESS TERM 

Rather than deal with systems that. have many possible stable states , a network 
t.hat has a unique stable stat.e will be studied . Consider a net.work that minimizes: 

E(u) = ~ I:(d i - lid:? +,\ I: 11I i+1 - lIi l 
2 . . 

(2) 
1 I 

Thf' absolute-vahIf.' function is used for the smoothness penalty instead of the more 
familiar quadratic term. There are two intuitive reasons why the absolut.e-value 
pena1t.y is an improvement over the quadratic penalty for piece-wise const.ant. seg­
nwntation. First, for large values of Illi - 1Ii+11, the penalty is not. as severE" which 
means that edges will be smoothed less. Second, small values of Illi - lIi+11 are 
penalized more than they are in t.he quadratic case, resulting in a flat.ter surface 
bet.ween edges. Since no complex continuation or annealing methods are necessary 
t.o avoid local minima. this computat.ional model is of interest to vision researchers 
independent of any hardware implicat.ions. 

This method is very similar to constrained optimization methods uisclIssed by Platt 
[14] and Gill [4]. Uncler this interpretation, the problem is to minimize L(di - Ui f 
with t.he constraint. that lIj = lIi+l for all i. Equation 1 is an inst.ance of the penalty 
met.hod, as ,\ ~ (Xl, the const.raint lIi = lIi+l is fulfilled exactly. The absolute-value 
value penalt.y function given in Equat.ion 2 is an example of a nondifferent.ial pena.lty. 
The const.raint. lli = Ui+1 is fulfilled exactly for a finit.e value of ,\. Howewr, unlike 
typical constrained optimization methous, this application requires some of these 
"exact ,. constraints to fail (at discontinuities) and others to be fulfilled . 

This algorithm also resembles techniques in robust st.at.istics, a field pioneered and 
formalized by Huber [9]. The need for robust estimation techniques in visual pro­
cessing is clear since, a single out.lier may cause wild variations in standard regular­
ization networks which rely on quadrat.ic data constraint.s [171. Rather than use the 
quadratic data constraints, robust. regression techniques tend to limit the infl uence 
of outlier dat.a points. 2 The absolut.e-value function is one method commonly used 
to reduce outlier succeptability. In fact, the absolute-value network developed in 
this paper is a robust method if discontinuities in the data are interpret.ed as out­
liers. The line process or resistive fuse networks can also be interpreted as robust 
methods using a more complex influence functions. 

3 ANALOG MODELS 

As pointed out by Poggio and Koch [15], the notion of minimizing power in linear 
networks implementing quadrat.ic "regularized" a.lgorithms must be replaced by t.he 
more general notion of minimizing the total resistor co-content [1:31 for nonlinear 
networks. For a voltage-controlled resistor characterized by I = f(V), the co­
content is defined as 

v 
J(V) = i f(V')dV' (3) 

20utlier detect.ion techniques have been mapped to analog hardware [8). 
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Figure 1: Nonlinear resist.ive network for piece-wise const.ant segmentation. 

One-dimensional surface int.erpolation from dense dat.a will be used as the model 
problem in t.his paper, but these techniques generalize to sparse data in multiple 
dimensions. A standarJ technique for smoothing or int.erpolating noisy input.s di is 
to minimize an energy! of the form: 

(1) 

The first. term ensures t.hat the solution Ui will be close to the data while the second 
term implements a smoothness constraint. The parameter A controls the tradeoff 
between the degree of smoothness and the fidelity to the data. Equation 1 can 
be interpreted as a regularization method [1] or as the power dissipa.ted the linear 
version of the resistive network shown in Figure 1 [16]. 

Since the energy given by Equation 1 oversmoothes discontinuities, numerous re­
searchers (starting with Geman and Geman [3]) have modified Equa.tion 1 with 
line processes and successfully demonstrated piece-wise smooth segmentation. In 
these methods, the resultant energy is nonconvex and complex annealing or con­
tinuation methods are required to converge to a good local minima of the energy 
space. This problem is solved using probabilistic [11] or deterministic annealing 
techniques [2, 10]. Line-process discontinuities have been successfully demonstrated 
in analog hardware using resistive fuse networks [5], but continuation methods are 
still required to find a good solution [6]. 

lThe term ene'yy is used throughout this paper as a cost functional to be minimized. 
It does not necessarily relate t.o any true energy dissipated in the real world. 
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(b) 6 = lOOmV 

(c) S = lOmV 

(d)S=lmV 

Figure 2: Various examples of tiny-tanh network simulation for varying 6. The I-V 
characteristic of the saturating resistors is I = ,\ tanh(V /6). (a) shows a synthetic 
1.0V tower image with additive Gaussian noise of q = O.3V which is input to the 
network. The network outputs are shown in Figures (b) 6 = 100mV, (c) 6 = 10mV 
and (d) 6 = 1m V. For all simulations ,\ = 1. 
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Figure 3: Tiny tanh circuit. The saturating tanh characteristic is measured between 
nodes VI and \/2, Controls FR and VG set the conductance and saturation voltage 
for the device. 

For a linear resistor, I = ev, the co-cont.ent. is given by ~ev2, which is half the 
dissipa.ted power P = eV~. 

The absolute-value functional in Equat.ion 2 is not strictly convex. Also, since the 
absolut.e-value function is nondifferentiable at the origin, hardware and software 
methods of solution will be plagued with instabilities and oscillations. We approx­
imate Equation 2 with the following well-behaved convex co-content: 

(4) 

The co-content becomes the absolute-va.lue cost function in Equation 2 in the lim­
iting case as 8 -----t O. The derivative of Equation 2 yields Kirchoff's current equation 
at each node of the resistive network in Figure 1: 

Uj - Ui+l Ui - Uj-l 
(Uj-dj)+Atanh( 8 )+Atanh( 8 )=0 (5) 

Therefore, construction of this network requires a nonlinear resistor with a hyper­
bolic tangent I-V characteristic with an extremely narrow linear region. For this 
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reason, t.his element. is called t.he tiTly-tanh resist.or. This saturating resistor is used 
as the nonlinear element. in the resistive network shown in Figure 1. Its I-V charac­
t.eristic is I = -\ tanh(l' / b). It is well-known that any circuit made of inuependent. 
voltage sources and two-terminal resistors \'\lit.h strictly increasing 1-V characterist.ics 
has a unique st.able st.ate. 

4 COMPUTER SIMULATIONS 

Figure 2a shows a synthetic 1.0V tower image with additive Gaussian noise of 
(J = 0.3V. Figure 2b shows the simulated result for b = 100m V and -\ = 1. As 
Mead has observed, a network of saturating resistors has a limited segmentation 
effect. [12]. Unfortunately, as seen in the figure, noise is still evident in the output, 
and the curves on either side of the step have started t.o slope toward one anot.her. 
As -\ is increased to further smooth the noise, the t.wo sides of the st.ep will blend 
together into one homogeneous region. However, a'3 the width of the linear region 
of t.he sat.urating resist.or is reduced, network segmentation propert.ies are greatly 
enhanced. Segmentation performance improves for b = 10m V shown in Figure LC 
and further improves for f, = 1mF in Figure 2d. The best. segment.ation occurs when 
the I-V curve resembles a step function, and co-content., therefore, approximates an 
absolute-value. Decreasing b less than 1m V shows no discernible change in the 
output.. 3 

One drawback of this net.work is t.hat it does not. recover the exact heights of input 
steps. Rather it. subtracts a const.ant from the height of each input. It is st.raight.for­
ward to show that the amount each uniform region is pulled towards the background 
is given by -\(perimeter/area) [7]. Significant features with large area/perimeter ra­
tios will retain their original height. Noise point.s have small area/perimeter ratios 
and therefore will be pulled towards the background. Typically, the exact values of 
the height.s are less important than the location of the discontinuities. Furthermore, 
it. would not be uifficult to construct a t.wo-stage network t.o recover the exact values 
of the step height.s if desired. In this scheme a tiny-tanh network would control the 
switches on a second fuse network. 

5 ANALOG IMPLEMENTATION 

Mead has constructed a CMOS saturating resistor with an I-V characteristic of the 
form I = -\ tanh(ll/b), where delta must be larger than 50mV because of funda­
mental physical limitations [12]. Simulation results from section 4 suggest that for 
a tower of height h to be segmented, h/8 must be at least on the order of 1000. 
Therefore a network using Mead's saturating resistor (8 = 50m V) could segment a 
tower on the order of 50V, which is much too large a voltage to input to these chips. 
Furt.hermore, since we are typically interested in segmenting images into more than 
two levels even higher voltages would be required. The tiny-tanh circuit (shown in 
Figure 3) builds upon an older version of Mead's saturating resistor [18] using a 
gain stage t.o decrease the linear region of the device. This device can be made to 
saturate at voltages as low as 5m V. 

3These simulations were also used to smooth and segment noisy depth da.ta from a 
correlation-based stereo algorithm run on real images [7). 
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Figure 4: Measured segmentat.ion performance of the tiny-tanh network for a step. 
The input shown 011 the left. is about. a IV step. The out.put shown on the right. is 
a sf'gment.ed step about 0.5V in height. 

By implementing the nonlinear resistors in Figure 1 with the tiny-t.anh circuit. a 
ID segmentation network was successfully fabricated and t.ested. Figure 4 shows 
t.he segmentation which resulted when a st.ep (about 1 V) ,vas scanned into the chip. 
The segment.ed step has been reduced to about 0.5V. No special annealing met.hods 
,,,ere necessary because a convex energy is being minimized. 

6 CONCLUSION 

A novel energy functional was developed for piece-wise constant segmentatioll.4 

This computational model is of interest to vision researchers independent of any 
hardware implications, because a convex energy is minimized. In sharp contrast to 
previous solutions of t.his problem, no complex continuation or annealing methods 
are necessary to avoid local minima. By interpreting this Lyapunov energy as the 
co-content of a nonlinear circuit, we have built and demonstrated the tiny-tanh 
network, a cont.inuous-time segmentation network in analog VLSI. 

Acknowledgements 

Much of this work was perform at Calt.ech with the support of Christof Koch and 
Carver Mead. A Hughes Aircraft graduate student fellowship and an NSF postdoc­
toral fellowship are gratefully acknowledged. 

4This work has also been extended to segment piece-wise lillea.r regions, instead of the 
purely piece-wise constant processing discussed in this paper [7]. 



804 Harris 

References 

[1] M. Bert.ero, T. Poggio, and V. Torre. Ill-posed problems in early vision . Proc. 
IEEE, 76:869-889, 1988. 

[2] A. Blake and A. Zisserman. Visual Reconstruction. MIT Press. Cambridge, 
MA. 1987. 

[3] S. Geman and D. Geman. Stochast.ic relaxation. gibbs distribut.ion and the 
bayesian rest.oration of images. IEEE Trans. Pafifrll Anal. Mach. Intdl., 
6:721-741, 1984. 

[4] P. E. Gill, "V. Murray, and M. H. 'Vright. Practical Optimization. Academic 
Press, 1981. 

[5] .J. G. Harris, C. Koch, and .J. Luo. A two-dimensional analog VLSI circuit for 
detecting discontinuities in early vision. Science, 248:1209-1211,1990. 

[6] .J. G. Harris, C. Koch, .J. Luo, and .J . 'Wyat.t.. Resist.ive fuses: analog hardware 
for det.ecting discontinuities in early vision. In Ivl. Mead, C.and Ismail, editor, 
Analog VLSI Implementations of Neural Systems. Kluwer, Norwell. MA, 1989. 

[7] .J .G. Harris. Analog models for early vision. PhD thesis, California Inst.itut.e of 
Technology, Pasadena, CA, 1991. Dept. of Computat.ion and Neural Syst.ems. 

[8] .J .G. Harris, S.C. Liu, and B. Mathur. Discarding out.liers in a nonlinear re­
sistive network. In blter1lational Joint Conference 011 NEural .Networks, pages 
501-506, Seattie, 'VA., July 1991. 

[9] P .. l. Huber. Robust Statistics . . J. 'Viley & Sons, 1981. 

[10] C. Koch, .J. Marroquin, and A. Yuille. Analog "neuronal" networks in early 
vision. Proc Nail. Acad. Sci. B. USA, 83:4263-4267, 1987. 

[11] J. Marroquin, S. Mitter, and T. Poggio. Probabilistic solut.ion of ill-posed 
problems in computational vision. J. Am. Statistic Assoc. 82:76-89, 1987. 

[12] C. Mead. Analog VLSI and Neural Systems. Addison-\Vesley, 1989. 

[13] w. Millar. Some general theorems for non-linear systems possessing resistance. 
Phil. Mag., 42:1150-1160, 1951. 

[14] .J. Platt. Constraint methods for neural networks and computer graphics. Dept. 
of Comput.er Science Technical Report Caltech-CS-TR-89-07, California Insti­
tute of Technology, Pasadena, CA, 1990. 

[15] T. Poggio and C. Koch. An analog model of computation for the ill-posed prob­
lems of early vision. Technical report, MIT Artificial Intelligence Laboratory, 
Cambridge, MA, 1984. AI Memo No. 783. 

[16] T. Poggio and C. Koch. Ill-posed problems in early vision: from computational 
theory to analogue networks. Proc. R. Soc. Lond. B, 226:303-323, 1985. 

[17] B.G. Schunck. Robust computational vision. In Robust methods in computer 
tJision workshop., 1989. 

[18] M. A. Sivilotti, M. A. Mahowald, and C. A. Mead. Real-time visual compu­
tation using analog CMOS processing arrays. In 1987 Stanford Conference on 
Very Large Scale Integration, Cambridge, MA, 1987. MIT Press. 


