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Abstract 

In a Bayesian framework, we give a principled account of how domain­
specific prior knowledge such as imperfect analytic domain theories can be 
optimally incorporated into networks of locally-tuned units: by choosing 
a specific architecture and by applying a specific training regimen. Our 
method proved successful in overcoming the data deficiency problem in 
a large-scale application to devise a neural control for a hot line rolling 
mill. It achieves in this application significantly higher accuracy than 
optimally-tuned standard algorithms such as sigmoidal backpropagation, 
and outperforms the state-of-the-art solution. 

1 INTRODUCTION 

Learning in connectionist networks typically requires many training examples and 
relies more or less explicitly on some kind of syntactic preference bias such as "mini­
mal architecture" (Rumelhart, 1988; Le Cun et ai., 1990; Weigend, 1991; inter alia) 
or a smoothness constraint operator (Poggio et ai., 1990), but does not make use of 
explicit representations of domain-specific prior knowledge. If training data is defi­
cient, learning a functional mapping inductively may no longer be feasible, whereas 
this may still be the case when guided by domain knowledge. Controlling a rolling 
mill is an example of a large-scale real-world application where training data is 
very scarce and noisy, yet there exist much refined, though still very approximate, 
analytic models that have been applied for the past decades and embody many 
years of experience in this particular domain. Much in the spirit of Explanation-
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Based Learning (see, for example, Mitchell et ai., 1986; Minton et ai., 1986), where 
domain knowledge is applied to get valid generalizations from only a few training 
examples, we consider an analytic model as an imperfect domain theory from which 
the training data is "explained" (see also Scott et ai., 1991; Bergadano et ai., 1990; 
Tecuci et ai., 1990). Using a Bayesian framework, we consider in Section 2 the 
optimal response of networks in the presence of noise on their input, and derive, 
in Section 2.1, a familiar localized network architecture (Moody et ai., 1989,1990). 
In Section 2.2, we show how domain knowledge can be readily incorporated into 
this localized network by applying a specific training regimen. These results were 
applied as part of a project to devise a neural control for a hot line rolling mill, and, 
in Section 3, we describe experimental results which indicate that incorporating 
domain theories can be indispensable for connectionist networks to be successful 
in difficult engineering domains. (See also references for one of our more detailed 
papers.) 

2 THEORETICAL FOUNDATION 

2.1 NETWORK ARCHITECTURE 

We apply a Bayesian framework to systems where the training data is assumed to 
be generated from the true model I, which itself is considered to be derived from a 
domain theory b that is represented as a function. Since the measurements in our ap­
plication are very noisy and clustered, we took this as the paradigm case, and assume 
the actual input X EJRd to be a noisy version of one of a small number (N) of proto­
typical input vectors it, ... , ~EJRd where the noise is additive with covariance ma­
trix~. The corresponding true output values I(it), . .. , I(~)E JR are assumed to be 
distributed around the values suggested by the domain theory, b(it), ... , b(~) (vari­
ance C7~rior). Thus, each point in the training data D := {(Xi, Yi); i = 1, ... , M} is 
considered to be generated as follows: Xi is obtained by selecting one of the t~ and 
adding zero-mean noise with covariance ~, and Yi is generated by adding Gaussian 
zero-mean noise with variance C7Jata to l(ik).l We determine the system's response 
O( x) to an input X to be optimal with respect to the expectation of the squared 
error (MMSE-estimate): 

O(x) := argmin £((/(1'true) - 0(x))2). 
o(x) 

The expectation is given by "L,~1 P(Ttrue = t: IX = x) . (/(4) - 0(x))2. Bayes' 
Theorem states that P(Ttrue = t;lx = x) = p(X = xlTtrue = 4) . P(7true = 
4) / p(X = x). Under the assumption that all 4 are equally likely, simplifying the 
derivative of the expectation yields 

IThis approach is related to Nowlan (1990) and MacKay (1991), but we emphasize the 
influence of different priors over the hypothesis space by giving preference to hypotheses 
that are closer to the domain theory. 
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where Ci equals £(f(t:)ID), i.e. the expected value of f(t:) given that the training 
data is exactly D. Assuming the input noise to be Gaussian and ~, unless otherwise 
noted, to be diagonal, ~ = (8ij (Trhs,i,jS,d, the probability density of X under the 
assumption that Ttrue equals 4 is given by 

p(X = xlTtrue = ~) = (27r)d/}'I~ll/2 exp [ -~(x - 4)t ~-1 (x - 4)] 
where 1.1 is the determinant. The optimal response to an input x can now be 
written as 

O(x) = 2::~~exp[-t(X - t;)t ~-1 (x - t:)] . Ci 

2::i=l exp[-~(x - t:)t ~-1 (x - t:)] 
(1) 

Equation 1 corresponds to a network architecture with N Gaussian Basis Functions 
(GBFs) centered at 4, k = 1, ... ,N, each of which has a width (Ti, i = 1, ... ,d, 
along the i-th dimension, and an output weight Ck. This architecture is known 
to give smooth function approximations (Poggio et al., 1990; see also Platt , 1990), 
and the normalized response function (partitioning-to-one) was noted earlier in 
studies by Moody et al. (1988, 1989, 1990) to be beneficial to network performance. 
Carving up an input space into hyperquadrics (typically hyperellipsoids or just 
hyperspheres) in this way suffers in practice from the severe drawback that as soon 
as the dimensionality of the input is higher, it becomes less feasible to cover the 
whole space with units of only local relevance ("curse of dimensionality"). The 
normalized response function has an essentially space-filling effect, and fewer units 
have to be allocated while, at the same time, most of the locality properties can be 
preserved such that efficient ball tree data structures (Omohundro, 1991) can still 
be used. If the distances between the centers are large with respect to their widths, 
the nearest-neighbor rule is recovered. With decreasing distances, the output of the 
network changes more smoothly between the centers. 

2.2 TRAINING REGIMEN 

The output weights Ci are given by 

Ci = £(f(t:)ID) = 1: z· p(f(t:) = zlD) dz. 

Bayes' Theorem states that p(f(i;) = zlD) = p(Dlf(i;) = z) . p(f(i;) = z) / p(D). 
Let M (i) denote the set of indices j of the training data points (x j , Yj) that were 
generated by adding noise to (i;, f( ii)), i. e. the points that "originated" from ii. 
Note that it is not known a priori which indices a set M (i) contains; only posterior 
probabilities can be given. By applying Bayes' Theorem and by assuming the 
independence between different locations t:, the coefficients Ci can be written as2 

00 n [ 1 (Z_y",)2] J mEM(i) exp -2' O'~ata 
Ci = z· 00 

J n [_l(v-YmP] 
-00 mEM(i) exp 2 0'2 

-00 data 

exp[_l (Z-b(i'.))2] 
2 0'2 

prior dz. 
exp [_1(V-b(i'.))2] dv 

2 0'2 
prior 

2The normalization constants of the Gaussians in numerator and denominator cancel 
as well as the product for all m~M(i) of the probabilities that (Xm, Ym) is in the data set. 
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It can be easily shown that this simplifies to 

LmEM(i) Ym + k . b(t:) 
Ci = IM(i)1 + k 

(2) 

where k = uJata/ Uirior and I· I denotes the cardinality operator. In accordance 
with intuition, the coefficients Ci turn out to be a weighted mean between the value 
suggested by the domain theory b and the training data values which originated 
from t:. The weighting factor k/(IM(i)1 + k) reflects the relative reliability of the 
two sources of information, the empirical data and the prior knowledge. 

Define Si as Si = (Ci - b(ik)) . k + LmEM(i)(Ci - Ym). Clearly, if ISil is minimized 
to 0, then Ci reaches exactly the optimal value as it is given by equation 2. An 
adaptive solution to this is to update Ci according to Ci = -'"'( . Si. Since the 
membership distribution for M( i) is not known a priori, we approximate it using a 
posterior estimate of the probability p(m E M(i)lxm) that m is in M(i) given that 
xm was generated by some center t~, which is 

( E M( ')I- ) - p(X = xmlTtrue = t:) pm Z Xm - M _ _ . 

Lk=l p(X = xmlTtrue = tk) 

p(X = xmlTtrtLe = t:) is the activation acti of the i-th center, when the network is 
presented with input xm . Substituting the equation in the sum of Si leads to the 
following training regimen: Using stochastic sample-by-sample learning, we present 
in each training step with probability 1 - A a data point Yi, and with probability A 
a point b(ik) that is generated from the domain theory, where A is given by 

k·N 
A:= k.N+M (3) 

(Recall that M is the total number of data points, and N is the number of centers.) 
A varies from 0 (the data is far more reliable than the prior knowledge) to 1 (the 
data is unreliable in comparison with the prior knowledge). Thus, the change of Ci 
after each presentation is proportional to the error times the normalized activation 
of the i-th center, acti / Lf=l actk. 

The optimal positions for the centers t: are not known in advance, and we therefore 
perform standard LMS gradient descent on t:, and on the widths Ui. The weight 
updates in a learning step are given by a discretization of the following dynamic 
equations (i=l, ... ,N; j=l, ... ,d): 

. Ci - O(i) 1 
t·· - 2", . ~ . act · . . - . (x· - t .. ) 

ZJ - I Z "",N 2 J ZJ 

L...,.k=l actk Uii 

( 1) Ci-O(X) 2 
-2- = -'"'( . ~. acti . N . (xi - tii) 
uij Lk=l actk 

where ~ is the interpolation error, acti is the (forward-computed) activity of the 
the i-th center, and tii and Xi are the j-th component of t: and x respectively. 
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3 APPLICATION TO ROLLING MILL CONTROL 

3.1 THE PROBLEM 

In integrated steelworks, the finishing train of the hot line rolling mill transforms 
preprocessed steel from a casting successively into a homogeneously rolled steel­
plate. Controlling this process is a notoriously hard problem: The underlying phys­
ical principles are only roughly known. The values ofthe control parameters depend 
on a large number of entities, and have to be determined from measurements that 
are very noisy, strongly clustered, "expensive," and scarce.3 On the other hand, 
reliability and precision are at a premium. Unreasonable predictions have to be 
avoided under any circumstances, even in regions where no training data is avail­
able, and, by contract, an extremely high precision is required: the rolling tolerance 
has to be guaranteed to be less than typically 20j.tm, which is substantial, partic­
ularly in the light of the fact that the steel construction that holds the rolls itself 
expands for several millimeters under a rolling pressure of typically several thou­
sands of tons. The considerable economic interest in improving adaptation methods 
in rolling mills derives from the fact that lower rolling tolerances are indispensable 
for the supplied industry, yet it has proven difficult to remain operational within 
the guaranteed bounds under these constraints. 

The control problem consists of determining a reduction schedule that specifies for 
each pair of rolls their initial distance such that after the final roll pair the desired 
thickness of the steel-plate (the actual feedback) is achieved. This reinforcement 
problem can be reduced to a less complex approximation problem of predicting the 
rolling force that is created at each pair of rolls, since this force can directly and 
precisely be correlated to the reduction in thickness at a roll pair by conventional 
means. Our task was therefore to predict the rolling force on the basis of nine 
input variables like temperature and rolling speed, such that a subsequent con­
ventional high-precision control can quickly reach the guaranteed rolling tolerance 
before much of a plate is lost. 

The state-of-the-art solution to this problem is a parameterized analytic model 
that considers nine physical entities as input and makes use of a huge number 
of tabulated coefficients that are adapted separately for each material and each 
thickness class. The solution is known to give only approximate predictions about 
the actual force, and although the on-line corrections by the high-precision control 
are generally sufficient to reach the rolling tolerance, this process necessarily takes 
more time, the worse the prediction is-resulting in a waste of more of the beginning 
of a steel-plate. Furthermore, any improvement in the adaptation techniques will 
also shorten the initialization process for a rolling mill, which currently takes several 
months because of the poor generalization abilities of the applied method to other 
thickness classes or steel qualities. 

The data for our simulations was drawn from a rolling mill that was being installed 
at the time of our experiments. It included measurements for around 200 different 
steel qualities; only a few qualities were represented more than 100 times. 

3The costs for a single sheet of metal-giving three useful data points that have to 
be measured under difficult conditions-amount to a six-digit dollar sum. Only a limited 
number of plates of the same steel quality is processed every week, causing the data scarcity. 
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3.2 EXPERIMENTAL RESULTS 

According to the results in Section 2, a network of the specified localized archi­
tecture was trained with data (artificially) generated from the domain theory and 
data derived from on-line measurements. The remaining design considerations for 
architecture selection were based on the extent to which a network had the capacity 
to represent an instantiation of the analytic model (our domain theory): 

Table 1 shows the approximation error of partitioning-to-one architectures with dif­
ferent degrees of freedom on their centers' widths. The variances of the GBFs were 
either all equal and not adapted (GBFs with constant widths), or adapted individ­
ually for all centers (GBFs with spherical adaptation), or adapted individually for 
all centers and every input dimension-leading to axially oriented hyperellipsoids 
(GBFs with ellipsoidal adaptation). Networks with "full hyperquadric" GBFs, for 

Method Normalized Error Maximum Error 
Squares [10- 2] [10- 2] 

GBFs with partitioning 
constant widths 0.40 2.1 
spherical adaptation 0.18 1.7 
ellipsoidal " 0.096 0.41 

G BFs no partitioning 0.85 5.3 
MLP 0.38 3.4 

Table 1: Approximation of an instantiation of the domain theory: localized archi­
tectures (GBFs) and a network with sigmoidal hidden units (MLP). 

which the covariance matrix is no longer diagonal, were also tested, but performed 
clearly worse, apparently due to too many degrees of freedom. The table shows 
that the networks with "ellipsoidal" GBFs performed best. Convergence time of 
this type of network was also found to be superior. The table also gives the com­
parative numbers for two other architectures: GBFs without normalized response 
function achieved significantly lower accuracy-even if they had far more centers 
{performance is given for a net with 81 centers)-than those with partitioning and 
only 16 centers. Using up to 200 million sample presentations, sigmoidal networks 
trained with standard backpropagation (Rumelhart et al., 1986) achieved a yet 
lower level-despite the use of weight-elimination (Le Cun, 1990), and an analysis 
of the data's eigenvalue spectrum to optimize the learning rate (see also Le Cun, 
1991). The indicated numbers are for networks with optimized numbers of hidden 
units. 

The value for A was determined according to equation 3 in Section 2.2 as A = 0.8; 
the noise in our application could be easily estimated, since there are multiple 
measurements for each input point available and the reliability of the domain theory 
is known. Applying the described training regimen to the GBF-architecture with 
ellipsoidal adaptation led to promising results: 

Figure 1 shows the points in a "slice" through a specific point in the input space: the 
measurements, the force as it is predicted by the analytic model and the network. It 
can be seen that the net exhibits fail-safe behavior: it sticks closely to the analytic 
model in regions where no data is available. If data points are available and suggest 
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Figure 1: Prediction of the rolling force by the state-of-the-art model, by the neural 
network, and the measured data points as a function of the input 'sheet thickness,' 
and 'temperature.' 

Method Percent of Improvement Percent of Improvement 
on Trained Samples at Generalization 

Gaussian Units A = 0.8 18 16 
Gaussian Units A = 0.4 41 14 
MLP 3.9 3.1 

Table 2: Relative improvement of the neural network solutions with respect to the 
state-of-the-art model: on the training data and on the cross-validation set. 

a different force, then the network modifies its output in direction of the data. 

Table 2 shows to what extent the neural network method performed superior to 
the currently applied state-of-the-art model (cross-validated mean). The numbers 
indicate the relative improvement of the mean squared error of the network solution 
with respect to an optimally-tuned analytic model. Although the data set was very 
sparse and noisy, it was nevertheless still possible to give a better prediction. The 
effect is also shown if a different value for A were chosen: the higher value of A, that 
is, more prior knowledge, keeps the net from memorizing the data, and improves 
generalization slightly. In case of the sigmoidal network, A was simply optimized 
to give the smallest cross-validation error. When trained without prior knowledge, 
none of the architectures lead to an improvement. 

4 CONCLUSION 

In a large-scale applications to devise a neural control for a hot line rolling mill, 
training data turned out to be insufficient for learning to be feasible that is only 
based on syntactic preference biases. By using a Bayesian framework, an imperfect 
domain theory was incorporated as an inductive bias in a principled way. The 
method outperformed the state-of-the-art solution to an extent which steelworks 
automation experts consider highly convincing. 
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