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Abstract 

We present two neural network controller learning schemes based on feedback­
error-learning and modular architecture for recognition and control of multiple 
manipulated objects. In the first scheme, a Gating Network is trained to acquire 
object-specific representations for recognition of a number of objects (or sets of 
objects). In the second scheme, an Estimation Network is trained to acquire 
function-specific, rather than object-specific, representations which directly estimate 
physical parameters. Both recognition networks are trained to identify manipulated 
objects using somatic and/or visual information. After learning, appropriate 
motor commands for manipulation of each object are issued by the control 
networks. 

1 INTRODUCTION 
Conventional feedforward neural-network controllers (Barto et aI., 1983; Psaltis et al., 
1987; Kawato et aI., 1987, 1990; Jordan, 1988; Katayama & Kawato, 1991) can not cope 
with multiple or changeable manipulated objects or disturbances because they cannot 
change immediately the control law corresponding to the object. In interaction with 
manipulated objects or, in more general terms, in interaction with an environment which 
contains unpredictable factor, feedback information is essential for control and object 
recognition. From these considerations, Gomi & Kawato (1990) have examined the 
adaptive feedback controller learning schemes using feedback-error-Iearning, from which 
impedance control (Hogan, 1985) can be obtained automatically. However, in that scheme, 
some higher system needs to supervise the setting of the appropriate mechanical impedance 
for each manipulated object or environment. 

In this paper, we introduce semi-feedforward control schemes using neural networks which 
receive feedback and/or feedforward information for recognition of multiple manipulated 
objects based on feedback-error-learning and modular network architecture. These schemes 
have two advantages over previous ones as follows. (1) Learning is achieved without the 
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exact target motor command vector, which is unavailable during supervised motor learning. 
(2) Although somatic information alone was found to be sufficient to recognize objects, 
object identification is predictive and more reliable when both somatic and visual information 
are used. 

2 RECOGNITION OF MANIPULATED OBJECTS 
The most important issues in object manipulation are (l) how to recognize the manipulated 
object and (2) how to achieve uniform performance for different objects. There are several 
ways to acquire helpful information for recognizing manipulated objects. Visual information 
and somatic information (performance by motion) are most informative for object recognition 
for manipulation. 

The physical characteristics useful for object manipulation such as mass, softness and 
slipperiness, can not be predicted without the experience of manipulating similar objects. 
In this respect, object recognition for manipulation should be learned through object 
manipulation. 

3 MODULAR ARCHITECTURE USING GATING NETWORK 
Jacobs et al. (1990, 1991) and Nowlan & Hinton (1990, 1991) have proposed a competitive 
modular network architecture which is applied to the task decomposition problem or 
classification problems. Jacobs (1991) applied this network architecture to the multi-payload 
robotics task in which each expert network controller is trained for each category of 
manipulated objects in terms of the object's mass. In his scheme, the payload's identity is 
fed to the gating network to select a suitable expert network which acts as a feedforward 
controller. 

We examined modular network architecture using feedback-e"or-learning for simultaneous 
learning of object recognition and control task as shown in Fig.l. 
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Fig.1 Configuration of the modular architecture using Gating Network 
for object manipulation based on feedback-error-learning 

In this learning scheme, the quasi-target vector for combined output of expert networks is 
employed instead of the exact target vector. This is because it is unlikely that the exact 
target motor command vector can be provided in learning. The quasi-target vector of 
feedforward motor command, u' is produced by : 

'- + U - U Ufo ' (1) 
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Here, U denotes the previous final motor command and ufo denotes the feedback motor 
command. Using this quasi-target vector, the gating and expert networks are trained to 
maximize the log-likelihood function, In L, by using backpropagation. 

In L = In i gje -IU'-u,r /2(1,2 (2) 
j=! 

Here, uj is the i th expert network output, (Ij is a variance scaling parameter of the i th 
expert network and gj' the i th output of gating network, is calculated by 

eS, 

gj =-11 -, (3) 

LesJ 

j=! 

where Sj denotes the weighted input received by the i th output unit. The total output of 
the modular network is 

11 

uff = ~gjUj' (4) 
j=l 

By maximizing Eq.2 using steepest ascent method, the gating network learns to choose 
the expert network whose output is closest to the quasi-target command, and each expert 
network is tuned correctly when it is chosen by the gating network. The desired trajectory 
is fed to the expert networks so as to make them work as feedforward controllers. 

4 SIMULATION OF OBJECT MANIPULATION 
BY MODULAR ARCHITECTURE WITH GATING NETWORK 
We show the advantage of the learning schemes presented above by simulation results 
below. The configuration of the controlled object and manipulated object is shown in 
Fig.2 in which M, B, K respectively denote the mass, viscosity and stiffness of the 
coupled object (controlled- and manipulated-object). The manipulated object is changed 
every epoch (l [sec]) while the coupled object is controlled to track the desired trajectory. 
Fig.3 shows the selected object, the feedforward and feedback motor commands, and the 
desired and actual trajectories before learning. 
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Fig.2 Configuration of the controlled 
object and the manipulated object 

- -- - -
~ -- --l~-a __ -- -

t:~ 
.24,------~1------r-----"--~~1 

o 5 20 
time [ •• c] 

Fig.3 Temporal patterns of the selected 
object, the motor commands, the desired 
and actual trajectories before learning 

The desired trajectory, xd ' was produced by Ornstein-Uhlenbeck random process. As 
shown in Fig.3, the error between the desired trajectory and the actual trajectory remained 
because the feedback controller in which the gains were fixed, was employed in this 
condition. (Physical characteristics of the objects used are listed in Fig.4a) 
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4.1 SOMATIC INFORMATION FOR GATING NETWORK 
We call the actual trajectory vector, x, and the final motor command, U , "somatic 
infonnation". Somatic infonnation should be most useful for on-line (feedback) recognition 
of the dynamical characteristics of manipulated objects. The latest four times data of 
somatic information were used as the gating network inputs for identification of the 
coupled object in this simulation. s ofEq.3 is expressed as: 

s(t) = '1'1 (x(t), x(t -1), x(t - 2), x(t - 3), u(t), u(t -1), u(t - 2), u(t - 3»). (5) 

The dynamical characteristics of coupled objects are shown in Fig.4a. The object was 
changed in every epoch (l [secD. The variance scaling parameter was (Jj = 0.8 and the 
learning rates were 77ga,e = 1. 0 x 10-3 and 77expert i = 1. 0 x 10-5 • The three-layered feedforward 
neural network (input 16, hidden 30, output 3) was employed for the gating network and 
the two-layered linear networks (input 3, output 1) were used for the expert networks. 

Comparing the expert's weights after learning and the coupled object characteristics in 
Fig.4a, we realize that expert networks No.1, No.2, No.3 obtained the inverse dynamics 
of coupled objects y, (3, a, respectively. The time variation of object, the gating network 
outputs, motor commands and trajectories after learning are shown in Fig.4b. The gating 
network outputs for the objects responded correctly in the most of the time and the 
feedback motor command, ufo' was almost zero. As a consequence of adaptation, the 
actual trajectory almost perfectly corresponded with the desired trajectory. 
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Fig.4 Somatic information for gating network, a. Statistical analysis of the 
correspondence of the expert networks with each object after learning (averaged 
gating outputs), b. Temporal patterns of objects, gating outputs, motor commands 
and trajectories after learning 

4.2 VISUAL INFORMATION FOR GATING NETWORK 

20 

We usually assume the manipulated object's characteristics by using visual infonnation. 
Visual information might be helpful for feedforward recognition. In this case, s of Eq.3 is 
expressed as: 

s(t) = 'l'2(V(t») . (6) 

We used three visual cues corresponding to each coupled object in this simulation as 
shown in Fig.5a. At each epoch in this simulation, one of three visual cues selected 
randomly is randomly placed at one of four possible locations on a 4 x 4 retinal matrix. 
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The visual cues of each object are different, but object ex and ex* have the same dynamical 
characteristics as shown in Fig.5a. The gating network should identify the object and 
select a suitable expert network for feedforward control by using this visual information. 
The learning coefficients were O"j = 0.7, 17gate = 1. 0 X 10-3 , 17eXpert j = 1. 0 X 10-5 . The same 
networks used in above experiment were used in this simulation. 

After learning, the expert network No.2 acquired the inverse dynamics of object ex and ex * , 
and expert network No.3 accomplished this for object y. It is recognized from Fig.5b that 
the gating network almost perfectly selected expert network No.2 for object ex and ex*, 
and almost perfectly selected expert network No.3 for object y. Expert network No.1 
which did not acquire inverse dynamics corresponding to any of the three objects, was not 
selected in the test period after learning. The actual trajectory in the test period corresponded 
almost perfectly to the desired trajectory. 

b. - - ---- --- --- - -a. Gating Net. Outputs V.s. Objects 
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Fig. 5 Visual information for gating network, a. Statistical analysis of the 
correspondence of the expert networks with each Object after learning (averaged 
gating outputs), b. Temporal patterns of objects, gating outputs, motor commands 
and trajectories after learning 

4.3 SOMATIC & VISUAL INFORMATION FOR GATING NETWORK 

We show here the simulation results by using both of somatic and visual information as 
the gating network inputs. In this case, s ofEq.3 is represented as: 

s(t)= 'l'3(x(t),·· ·,x(t-3),u(t),···,u(t-3),V(t)). (7) 

In this simulation, the object ex and ~* had different dynamical characteristics, but shared 
same visual cue as listed in Fig.6a. Thus, to identify the coupled object one by one, it is 
necessary for the gating network to utilize not only visual information but also somatic 
information. The learning coefficients were O"j = 1. 0, 17gale = 1. 0 X 10-3 and 
17expert j = 1. 0 X 10-5 . The gating network had 32 input units, 50 hidden units, and 1 output 
unit, and the expert networks were the same as in the above experiment. 

After learning, expert networks No.1, No.2, No.3 acquired the inverse dynamics of 
objects y, ~*, ex respectively. As shown in Fig.6b, the gating network identified the 
object almost correctly. 
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Fig. 6 Somatic & Visual information for gating network, a. Statistical analysis of the 
correspondence of the expert networks with each object after learning (averaged gating 
outputs), b. Temporal patterns of objects, gating outputs, motor commands and 
trajectories after learning 

4.4 UNKNOWN OBJECT RECOGNITION 
BY USING SOMATIC INFORMATION 

Fig.7b shows the responses for unknown objects whose physical characteristics were 
slightly different from known objects (see Fig.7a and Fig.4a) in the case using somatic 
information as the gating network inputs. Even if each tested object was not the same as 
any of the known (learned) objects, the closest expert network was selected. (compare 
Fig.4a and Fig.7a) During some period in the test phase, the feedback command increased 
because of an inappropriate feedforward command. 
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Fig. 7 Unknown objects recognition by using Somatic information, a. Statistical 
analysis of the correspondence of the expert networks with each object after learning 
(averaged gating outputs), b. Temporal patterns of objects, gating outputs, motor 
commands and trajectories after learning 
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5 MODULAR ARCHITECTURE 
USING ESTIMATION NETWORK 

The previous modular architecture is competitive in the sense that expert networks 
compete with each other to occupy its niche in the input space. We here propose a new 
cooperative modular architecture where expert networks specified for different functions 
cooperate to produce the required output. In this scheme, estimation networks are trained 
to recognize physical characteristics of manipulated objects by using feedback information. 
Using this method, an infinite number of manipulated objects in the limited domain can 
be treated by using a small number of estimation networks. We applied this method to 
recognizing the mass of the manipulated objects. (see Fig.8) 

Fig.9a shows the output of the estimation network compared to actual masses. The 
realized trajectory almost coincided with the desired trajectory as shown in Fig.9b. This 
learning scheme can be applied not only to estimating mass but also to other physical 
characteristics such as softness or slipperiness. 

j ,i.x 

Fig. 8 Confaguration of the modular architecture using 
mass estimation network for object manipulation by 
feedback-error-Iearning 

6 DISCUSSION 
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Fig. 9 a. Comparison of actual & 
estimated mass, b. desired & actual 
trajectory 
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In the first scheme, the internal models for object manipulation (in this case, inverse 
dynamics) were represented not in terms of visual information but rather, of somatic 
information (see 4.2). Although the current simulation is primitive, it indicates the very 
important issue that functional internal-representations of objects (or environments), 
rather than declarative ones, were acquired by motor learning. 

The quasi-target motor command in the first scheme and the motor command error in the 
second scheme are not always exactly correct in each time step because the proposed 
learning schemes are based on the feedback-error-learning method. Thus, the learning rates 
in the proposed schemes should be slower than those schemes in which exact target 
commands are employed. In our preliminary simulation, it was about five times slower. 
However, we emphasize that exact target motor commands are not available in supervised 
motor learning. 

The limited number of controlled objects which can be dealt with by the modular network 
with a gating network is a considerable problem (Jacobs, 1991; Nowlan, 1990, 1991). 
This problem depends on choosing an appropriate number of expert networks and value of 
the variance scaling parameter, (J' . Once this is done, the expert networks can interpolate 
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the appropriate output for a number of unknown objects. Our second scheme provides a 
more satisfactory solution to this problem. 

On the other hand, one possible drawback of the second scheme is that it may be difficult 
to estimate many physical parameters for complicated objects, even though the learning 
scheme which directly estimates the physical parameters can handle any number of 
objects. 

We showed here basic examinations of two types of neural networks - a gating network 
and a direct estimation network. Both networks use feedback and/or feedforward information 
for recognition of multiple manipulated objects. In future. we will attempt to integrate 
these two architectures in order to model tasks involving skilled motor coordination and 
high level recognition. 
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