Adaptive Development of Connectionist Decoders
for Complex Error-Correcting Codes

Sheri L. Gish Mario Blaum
IBM Research Division
Almaden Research Center
650 Harry Road
San Jose, CA 95120

Abstract

We present an approach for development of a decoder for any complex
binary error-correcting code (ECC) via training from examples of decoded
received words. Our decoder is a connectionist architecture. We describe
two separate solutions: A system-level solution (the Cascaded Networks
Decoder); and the ECC-Enhanced Decoder, a solution which simplifies
the mapping problem which must be solved for decoding. Although both
solutions meet our basic approach constraint for simplicity and compact-
ness, only the ECC-Enhanced Decoder meets our second basic constraint
of being a generic solution.

1 INTRODUCTION

1.1 THE DECODING PROBLEM

An error-correcting code (ECC) is used to identify and correct errors in a received
binary vector which is possibly corrupted due to transmission across a noisy channel.
In order to use a selected error-correcting code, the information bits, or the bits
containing the message, are encoded into a valid ECC codeword by the addition of
a set of extra bits, the redundancy, determined by the properties of the selected
ECC. To decode a received word, there is a pre-processing step first in which a
syndrome is calculated from the word. The syndrome is a vector whose length is

equal to the redundancy. If the syndrome is the all-zero vector, then the received
691



692

Gish and Blaum

word is a valid codeword (no errors). The non-zero syndromes have a one-to-one
relationship with the error vectors provided the number of errors does not exceed
the error-correcting capability of the code. (An error vector is a binary vector
equal in length to an ECC codeword with the error positions having a value of 1
while the rest of the positions have the value 0). The dccoding process is defined as
the mapping of a syndrome to its associated error vector. Once an error vector is
found, the corrected codeword can be calculated by XORing the error vector with
the received word. For more background in error-correcting codes, the reader is
referred to any book in the field, such as 2, 9].

EC("s differ in the number of errors which they can correct and also in the distance
(measured as a Hamming distance in codespace) which can be recognized between
the received word and a true codeword. Codes which can correct more errors and
cover greater distances are considered more powerful. However, in practice the
difficulty of developing an efficient decoder which can correct many errors prevents
the use of most ECC’s in the solution of real world problems. Although decoding
can be done for any ECC via lookup table, this method quickly becomes intractable
as the length of codewords and the number of errors possibly corrected increase.
Development of an efficient decoder for a particular EC'C’ is not straightforward.
Moreover, it was shown that decoding of a random code is an NP-hard problem [1, 4].

The purpose of our work is to develop an ECC decoder using the trainable machine
paradigm;i.e. we develop a decoder via training using examples of decoded received
words. To prove our concept, we have selected a binary block code, the (23,12,7)
Golay Code, which has “real world™ complexity. The Golay Code corrects up to 3
errors and has minimum distance 7. A Golay codeword is 23 bits long (12 infor-
mation bits, 11 bit redundancy); the syndrome is 11 bits long. There exist many
efficient decoding methods for the Golay code [2, 3, 9], but the code complexity
represents quite a challenge for our proposed approach.

1.2 A CONNECTIONIST ECC DECODER

We use a connectionist architecture as our EC'C decoder; the input is a syndrome
(we assume that the straightforward step of syndrome calculation is pre-processing)
and the output is the portion of the error vector corresponding to the information
bits in the received word (we ignore the redundancy). The primary reason for our
choice of a connectionist architecture is its inherent simplicity and compactness;
a connectionist architecture solution is readily implemented in either hardware or
software solutions to complex real world problems. The particular architecture we
use is the multi-layer feedforward network with one hidden layer. There are full
connections only between adjacent layers. The number of nodes in the input layer
is the number of bits in the syndrome, and the number of nodes in the output layer
1s the number of information bits in the ECC' codeword. The number of nodes in the
hidden layer is a free parameter, but typically this number is no more than 1 or 2
nodes greater than the number of nodes in the input layer. Our activation function
is the logistic function and our training algorithm is backpropagation (see [10] for a
description of both). This architectural approach has heen demonstrated to be both
cost-effective and a superior performer compared to classical statistical alternative
methods in the solution of complex mapping problems when it is used as a trainable
pattern classifier [6, 7].



Adaptive Development of Connectionist Decoders for Complex Error-Correcting Codes

There are two basic constraints which we have placed on our trainable connectionist
decoder. First, the final connectionist architecture must be simple and contain as
few nodes as possible. Second, the method we use to develop our decoder must be
able to be generalized to any binary EC(C'. To meet the second constraint, we insured
that the training dataset contained only examples of decoded words (i.e. no a priori
knowledge of code patterning or existing decoding algorithms was included), and
also that the training dataset was as small a subset of the possible error vectors as
was required to obtain generalization by trained networks.

2 RESULTS

2.1 THE CASCADED NETWORKS DECODER

Using our basic approach, we have developed two separate solutions. One, the
Cascaded Networks Decoder (see Figure 1) a system-level solution which parses
the decoding problem into a set of more tractable problems each addressed by a
separate network. These smaller networks each solve either simple classification
problems (binary decisions) or are specialized decoders. Performance of the Cas-
caded Networks Decoder is 95%. correct for the Golay code (tested on all 2'! possible
error vectors). and the whole system is small and compact. However, this solution
does not meet our constraint that the solution method be generic since the parsing
of the original problem does require some a priori knowledge about the ECC, and
the training of each network is done on a separate, self-contained schedule.

2.2 THE ECC-ENHANCED DECODER

The approach taken by the Cascaded Networks Decoder simplifies the solution
strategy of the decoding problem, while the EC'C'-Enhanced Decoder simplifies the
mapping problem to he solved by the decoder. In the ECC-Enhanced Decoder,
both the input syndrome and the output error vector are encoded as codewords
of an ECC'. Such encoding should serve to separate the inputs in input space and
the outputs in output space, creating a “region-to-region™ mapping which is much
easier than the “point-to-point” mapping required without encoding [8]. In addition,
the decoding of the network output compensates for some level of uncertainty in
the network’s performance; an output vector within a small distance of the target
vector will be corrected to the actual target by the ECC. This enhances training
procedures [5, 8].

We have found that the ECC-Enhanced Decoder method meets all of our constraints
for a connectionist architecture. However, we also have found that choosing the best
ECC for encoding the input and for encoding the output represents two critical and
quite separate problems which must be solved in order for the method to succeed.

2.2.1 Choosing the Input ECC Encoding

The goal for the chosen ECC into which the input is encoded is to achieve maximum
separation of input patterns in code space. The major constraint is the size of the
codeword (number of bits which the length of the redundancy must be), because
longer codewords increase the complexity of training and the size (in number of

693



694

Gish and Blaum

ERROR VECTOR
12 BITS

SYNDROME <S>
11 BITS

Figure 1: Cascaded Networks Decoder. A system-level solution incorporating 5
cascaded neural networks.

nodes) of the connectionist architecture. To determine the effect of different types
of ECC’s on the separation of input patterns in code space, we constructed a 325
pattern training dataset (mapping 11 bit syndrome to 12 bit error vector) and
encoded only the inputs using 4 different ECC's. The candidate ECC’s (with the
size of redundancy required to encode the 11 bit syndrome) were

e Hamming (bit level, 4 bit redundancy)

e Extended Hamming (bit level, 5 bit redundancy)

e Reed Solomon (4 bit byte level, 2 byte redundancy)
e Fire (bit level, 11 bit redundancy)

We trained 5 networks (1 with no encoding of input, 1 each with a different ECC
encoding) using this training dataset. Empirically, we had determined that this
training dataset 1is slightly too small to achieve generalization for this task; we
trained each network until its performance level on a 435 pattern test dataset (dif-
ferent patterns from the training dataset but encoded identically) degraded 20%.
We then analyzed the effect of the input encoding on the patterning of error posi-
tions we observed for the output vectors.












