
Neural Computing with Small Weights

Kai-Yeung Siu
Dept. of Electrical & Computer Engineering

University of California, Irvine
Irvine, CA 92717

Abstract

J ehoshua Bruck
IBM Research Division

Almaden Research Center
San Jose, CA 95120-6099

An important issue in neural computation is the dynamic range of weights
in the neural networks. Many experimental results on learning indicate
that the weights in the networks can grow prohibitively large with the
size of the inputs. Here we address this issue by studying the tradeoffs
between the depth and the size of weights in polynomial-size networks
of linear threshold elements (LTEs). We show that there is an efficient
way of simulating a network of LTEs with large weights by a network
of LTEs with small weights. In particular, we prove that every depth-d,
polynomial-size network of LTEs with exponentially large integer weights
can be simulated by a depth-(2d + 1), polynomial-size network of LTEs
with polynomially bounded integer weights. To prove these results, we
use tools from harmonic analysis of Boolean functions. Our technique is
quite general, it provides insights to some other problems. For example,
we are able to improve the best known results on the depth of a network
of linear threshold elements that computes the COM PARI SO N, SUM
and PRO DU CT of two n-bits numbers, and the MAX 1M U M and the
SORTING of n n-bit numbers.

1 Introduction

The motivation for this work comes from the area of neural networks, where a
linear threshold element is the basic processing element. Many experimental results
on learning have indicated that the magnitudes of the coefficients in the threshold
elements grow very fast with the size of the inputs and therefore limit the practical
use of the network. One natural question to ask is the following: How limited

944

Neural Computing with Small Weights 945

is the computational power of the network if we restrict ourselves to threshold
elements with only "small" growth in the coefficients? We answer this question by
showing that we can trade-off an exponential growth with a polynomial growth in
the magnitudes of coefficients by increasing the depth of the network by a factor of
almost two and a polynomial growth in the size.

Linear Threshold Functions: A linear threshold function f(X) is a Boolean
function such that

where

f(X) = sgn(F(X» = {_II if F(X) > 0
if F(X) < 0

n

F(X) = 2:= Wi . Xi + Wo

i=l

Throughout this paper, a Boolean function will be defined as f : {I, _I}n --+

{I, -I}; namely, 0 and 1 are represented by 1 and -1, respectively. Without loss
of generality, we can assume F(X):/; 0 for all X E {I,-I}n. The coefficients Wi

are commonly referred to as the weights of the threshold function. We denote the
class of all linear threshold functions by LT1 •

---LT1 functions: In this paper, we shall study a subclass of LT1 which we denote
by IT1 . Each function f(X) = sgn(L:~=l Wi' Xi + wo) in IT1 is characterized by
the property that the weights Wi are integers and bounded by a polynomial in n,
i.e. IWil ~ n C for some constant c > O.

Threshold Circuits: A threshold circuit [5, 10] is a Boolean network in which ---every gate computes an LT1 function. The size of a threshold circuit is the number - ---of LT1 elements in the circuit. Let LTk denote the class of threshold circuits of
depth k with the size bounded by a polynomial in the number of inputs. We define
LTk similarly except that we allow each gate in LTk to compute an LTI function.

Although the definition of (LTd linear threshold function allows the weights to be
real numbers, it is known [12] that we can replace each of the real weights by integers
of O(n log n) bits, where n is the number of input Boolean variables. So in the rest
of the paper, we shall assume without loss of generality that all weights are integers.
However, this still allows the magnitudes of the weights to increase exponentially
fast with the size of the inputs. It is natural to ask if this is necessary. In other
words, is there a linear threshold function that must require exponentially large
weights? Since there are 2n(n~) linear threshold functions in n variables [8, 14, 15],
there exists at least one which requires O(n2) bits to specify the weights. By the
pigeonhole principle, at least one weight of such a function must need O(n) bits,
and thus is exponentially large in magnitude. i.e.

-LTI ~ LT1

The above result was proved in [9] using a different method by explicitly constructing -an LT1 function and proving that it is not in LT1 . In the following section, we
shall show that the COMPARISON function (to be defined later) also requires
exponentially large weights. We will refer to this function later on in the proof of

946 Siu and Bruck

our main results. Main Results: The fact that we can simulate a linear threshold
function with exponentially large weights in a 'constant' number oflayers of elements
with 'small' weights follows from the results in [3] and [11]. Their results showed
that the sum of n n-bit numbers is computable in a constant number of layers of
'counting' gates, which in turn can be simulated by a constant number of layers of
threshold elements with 'small' weights. However, it was not explicitly stated how
many layers are needed in each step of their construction and direct application of
their results would yield a constant such as 13. In this paper, we shall reduce the
constant to 3 by giving a more 'depth'-efficient algorithm and by using harmonic
analysis of Boolean functions [1,2,6]. We then generalize this result to higher depth
circuits and show how to simulate a threshold circuit of depth-d and exponentially
large weights in a depth-(2d + 1) threshold circuit of 'small' weights, i.e. LTd ~

fr2d+l.
As another application of harmonic analysis, we also show that the
COM P ARISON and ADDITION of two n-bit numbers is computable with only
two layers of elements with 'small' weights, while it was only known to be com
putable in 3 layers [5]. We also indicate how our 'depth'-efficient algorithm can be --applied to show that the product of two n-bit numbers can be computed in LT4 .

In addition, we show that the MAXIMUM and SORTING ofn n-bit numbers
can be computed in fr3 and LT4 , respectively.

2 Main Results

Definition: Let X = (Xl, ... , Xn), Y = (YI, ... , Yn) E {I, _l}n. We consider X
and Y as two n-bit numbers representing E?=l Xi· 2' and E?=l Yi . 2i , respectively.

The COMPARISON function is defined as

C(X, Y) = 1 iff X ~ Y

In other words,
n

C(X, Y) = sgn{L:: 2i(Xi - yd + I}
i=l

Lemma 1 -COMPARISON tt LTI

On the other hand, using harmonic analysis [2], we can show the following:

Lemma 2

COMPARISON E m
Spectral representation of Boolean functions: Recently, harmonic analysis
has been found to be a powerful tool in studying the computational complexity of
Boolean functions [1, 2, 7]. The idea is that every Boolean function f : {I, _1}n -+

{I, -I} can be represented as a polynomial over the field of rational numbers as
follows:

f(X) = L aaxa
aE{O,l}n

Neural Computing with Small Weights 947

h X a al al an were = x 1 x 2 .•. Xn •

Such representation is unique and the coefficients of the polynomial, {aal Q E
{a, l}n}, are called the spectral coefficients of f.

We shall define the Ll spectral norm of f to be

IIfll = ~ laal·
ae{O,I}n

The proof of Lemma 2 is based on the spectral techniques developed in [2]. Using
probabilistic arguments, it was proved in [2] that if a Boolean function has Ll spec-

.-
tral norm which is polynomially bounded, then the function is computable in LT2 •

We observe (together with Noga Alon) that the techniques in [2] can be generalized
to show that any Boolean function with polynomially bounded Ll spectral norm
can even be closely approximated by a sparse polynomial. This observation is crucial
when we extend our result from a single element to networks of elements with large
weights.

Lemma 3 Let f(X) : {I, _l}n --+ {I, -I} such that IIfll ~ n C for some c. Then
for any k > 0, there exists a sparse polynomial

1
F(X) = N 2:'.:: wa Xa such that

aes

IF(X) - f(X)1 ~ n- k ,

where Wa and N are integers, S c {O, l}n, the size of S, Wa and N are all bounded
by a polynomial in n. Hence, f(X) E LT2 •

As a consequence of this result, Lemma 2 follows since it can be shown that
COM PARISON has a polynQmially bounded Ll spectral norm.

Now we are ready to state our main results. Although most linear threshold func
tions require exponentially large weights, we can always simulate them by 3 layers
of in elements.

Theorem 1

-LTI ~ LT3

The result stated in Theorem 1 implies that a depth-d threshold circuit with ex
ponentially large weights can be simulated by a depth-3d threshold circuit with
polynomially large weights. Using the result of Lemma 3, we can actually obtain a
more depth-efficient simulation.

Theorem 2

As another consequence of Lemma 3, we have the following :

948 Siu and Bruck

Corollary 1 Let /1 (X), ... , fm(X) be functions with polynomially bounded Ll spec-

tral norms, and g(/1 (X), ... , fm(X» be an fi\ function with fi(X) 's as inputs,
I.e.

m

g(/1(X), ... , fm(X» = sgn(2: Wdi(X) + wo)
i=l

Then 9 can be expressed as a sign of a sparse polynomial in X with polynomially
many number of monomial terms xcr 's and polynomially bounded integer coeffi----cients. Hence 9 E LT2.

If all LTI functions have polynomially bounded Ll spectral norms, then it would
follow that LTI C iT2 • However, even the simple MAJORITY function does not
have a polynomially bounded Ll spectral norm. We shall prove this fact via the
following theorem. (As in Lemma 3, by a sparse polynomial we mean a polynomial
with only polynomially many monomial terms xcr's).

Theorem 3 The iTl function MAJORITY:
n

sgn(2: X i)
i=l

cannot be approximated by a sparse polynomial with an error o(n -1).

Other applications of the harmonic analysis techniques and the results of Lemma 3
yields the following theorems:

Theorem 4

Let x, y be two n-bit numbers. Then

ADDITION(x, y) E m
---Theorem 5 The product of two n-bit integers can be computed in LT4 •

---Theorem 6 The MAX I MU M of n n-bit numbers can be computed in LT3.

Theorem 7 The SORTING ofn n-bit numbers can be computed in IT4 .

3 Concluding Remarks

Our main result indicates that for networks of linear threshold elements, we can
trade-off arbitrary real weights with polynomially bounded integer weights, at the
expense of a polynomial increase in the size and a factor of almost two in the depth of
the network. The proofs of the results in this paper can be found in [13]. We would
like to mention that our results have recently been improved by Goldmann, Hastad
and Razborov [4]. They showed that any polynomial-size depth-d network oflinear
threshold elements with arbitrary weights can be simulated by a polynomial-size
depth-(d + 1) network with "small" (polynomially bounded integer) weights. While
our construction can be made explicit, only the existence of the simulation result is
proved in [4]; it is left as an open problem in [4] if there is an explicit construction
of their results.

Neural Computing with Small Weights 949

Acknowledgements

This work was done while Kai-Yeung Siu was a research student associate at IBM
Almaden Research Center and was supported in part by the Joint Services Program
at Stanford University (US Army, US Navy, US Air Force) under Contract DAAL03-
88-C-0011, and the Department of the Navy (NAVELEX), NASA Headquarters,
Center for Aeronautics and Space Information Sciences under Grant NAGW-419-
S6.

References

[1] J. Bruck. Harmonic Analysis of Polynomial Threshold Functions. SIAM Jour
nal on Discrete Mathematics, May 1990.

[2] J. Bruck and R. Smolensky. Polynomial Threshold Functions, ACo Functions
and Spectral Norms. Technical Report RJ 7140, IBM Research, November
1989. Appeared in IEEE Symp. on Found. of Compo Sci. October, 1990.

[3] A. K. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibility.
Siam J. Comput . , 13:423-439, 1984.

[4] M. Goldmann, J. Hastad, and A. Razborov Majority Gates vS. General
Weighted Threshold Gates. Unpublished Manuscript.

[5] A. HajnaI, W . Maass, P. PudIak, M. Szegedy, and G. Turan. Threshold circuits
of bounded depth . IEEE Symp. Found. Compo Sci., 28:99-110, 1987.

[6] R. J. Lechner. Harmonic analysis of switching functions. In A. Mukhopadhyay,
editor, Recent Development in Switching Theory. Academic Press, 1971.

[7] N. LiniaI, Y. Mansour, and N. Nisan. Constant Depth Circuits, Fourier Trans
forms, and Learnability. Proc. 30th IEEE Symp. Found. Compo Sci., 1989.

[8] S. Muroga and 1. Toda. Lower Bound of the Number of Threshold Functions.
IEEE Trans. on Electronic Computers, EC 15, 1966.

[9] J. Myhill and W. H. Kautz. On the Size of Weights Required for Linear-Input
Switching Functions. IRE Trans. on Electronic Computers, EC 10, 1961.

[10] I. Parberry and G. Schnitger. Parallel Computation with Threshold Functions
. Journal of Computer and System Sciences, 36(3):278-302, 1988.

[11] N. Pippenger. The complexity of computations by networks. IBM J. Res.
Develop. , 31(2), March 1987.

[12] P. Raghavan. Learning in Threshold Networks: A Computation Model and
Applications. Technical Report RC 13859, IBM Research, July 1988.

[13] K.-Y. Siu and J. Bruck. On the Power of Threshold Circuits with Small
Weights. SIAM J. Discrete Math., 4(3):423-435, August 1991.

[14] D. R. Smith. Bounds on the Number of Threshold Functions. IEEE Trans. on
Electronic Computers, EC 15, 1966.

[15] S. Yajima and T. Ibaraki. A Lower Bound on the Number of Threshold Func
tions. IEEE Trans. on Electronic Computers, EC 14, 1965.

