
Unsupervised learning
of distributions on binary vectors

using two layer networks

Yoav Freund·
Computer and Information Sciences
University of California Santa Cruz

Santa Cruz, CA 95064

Abstract

David Haussler
Computer and Information Sciences
University of California Santa Cruz

Santa Cruz , CA 95064

We study a particular type of Boltzmann machine with a bipartite graph structure called a harmo
nium. Our interest is in using such a machine to model a probability distribution on binary input
vectors . We analyze the class of probability distributions that can be modeled by such machines.
showing that for each n ~ 1 this class includes arbitrarily good appwximations to any distribution
on the set of all n-vectors of binary inputs. We then present two learning algorithms for these
machines .. The first learning algorithm is the standard gradient ascent heuristic for computing
maximum likelihood estimates for the parameters (i.e. weights and thresholds) of the modeL Here
we give a closed form for this gradient that is significantly easier to compute than the corresponding
gradient for the general Boltzmann machine . The second learning algorithm is a greedy method
that creates the hidden units and computes their weights one at a time. This method is a variant
of the standard method for projection pursuit density estimation . We give experimental results for
these learning methods on synthetic data and natural data from the domain of handwritten digits.

1 Introduction

Let us suppose that each example in our in put data is a binary vector i = {x I, ... , xn } E {± l}n. and that
each such example is generated independently at random according some unknown distribution on {±l}n.
This situation arises. for instance. when each example consists of (possibly noisy) measurements of n different
binary attributes of a randomly selected object . In such a situation, unsupervised learning can be usefully
defined as using the input data to find a good model of the unknown distribution on {± l}n and thereby
learning the structure in the data.

The process of learning an unknown distribution from examples is usually called denszty estimation or
parameter estimation in statistics, depending on the nature of the class of distributions used as models.
Connectionist models of this type include Bayes networks (14). mixture models [3.13], and Markov random
fields [14,8]. Network models based on the notion of energy minimization such as Hopfield nets [9] and
Boltzmann machines [1] can also be used as models of probability distributions .

• yoavGcis. ucsc.edu

912

Unsupervised learning of distributions on binary vectors using 2-layer networks 913

The models defined by Hopfield networks are a special case of the more general Markov random field models
in which the local interactions are restricted to symmetric pairwise interactions between components of
the input. Boltzmann machines also use only pairwise interactions, but in addition they include hidden
units , which correspond to unobserved variables. These unobserved variables interact with the observed
variables represented by components of the input vector. The overall distribution on the set of possible
input vectors is defined as the marginal distribution induced on the components of the input vector by the
Markov random field over all variables, both observed and hidden. While the Hopfield network is relatively
well understood, it is limited in the types of distributions that it can model. On the other hand, Boltzmann
machines are universal in the sense that they are powerful enough to model any distribution (to any degree
of approximation), but the mathematical analysis of their capabilities is often intractable. Moreover, the
standard learning algorithm for the Boltzmann machine, a gradient ascent heuristic to compute the maximum
likelihood estimates for the weights and thresholds, requires repeated stochastic approximation, which results
in unacceptably slow learning. I In this work we attempt to narrow the gap between Hopfield networks and
Boltzmann machines by finding a model that will be powerful enough to be universal, 2 yet simple enough
to be analyzable and computationally efficient. 3 We have found such a model in a minor variant of the
special type of Boltzmann machine defined by Smolensky in his harmony theory [16][Ch.6J. This special type
of Boltzmann machine is defined by a network with a simple bipartite graph structure, which he called a
harmonium.

The harmonium consists of two types of units: input units, each of which holds one component of the input
vector, and hidden units, representing hidden variables. There is a weighted connection between each input
unit and each hidden unit, and no connections between input units or between hidden units (see Figure (1)) .
The presence of the hidden units induces dependencies, or correlations, between the variables modeled by
input units . To illustrate the kind of model that results, consider the distribution of people that visit a
specific coffee shop on Sunday. Let each of the n input variables represent the presence (+ 1) or absence (-1)
of a particular person that Sunday. These random variables are clearly not independent, e.g. if Fred's wife
and daughter are there, it is more likely that Fred is there , if you see three members of the golf club, you
expect to see other members of the golf club, if Bill is there you are unlikely to see Brenda there, etc. This
situation can be modeled by a harmonium model in which each hidden variable represents the presence or
absence of a social group. The weights connecting a hidden unit and an ipput unit measure the tendency of
the corresponding person to be associated with the corresponding group. In this coffee shop situation, several
social groups may be present at one time , exerting a combined influence on the distribution of customers.
This can be mo'deled easily with the harmonium , but is difficult to model using Bayes networks or mixture
models . <4

2 The Model

Let us begin by formalizing the harmonium model. To model a distribution on {±I}" we will use n input
units and some number m ~ 0 of hidden units. These units are connected in a bipartite graph as illustrated
in Figure (I) .

The random variables represented by the input units each take values in {+ I , -I}, while the hidden variables,
represented by the hidden units, take values in to, I} . The state of the machine is defined by the values
of these random variables . Define i = (XI," " xn) E {±l}n to be the state of the input units , and h =
(hi , ... ,hm) E {O,l}m to be the state of the hidden units .

The connection weights between the input ~nits and the ith hidden unit are denoted 5 by w(') E Rn and the
bias of the ith hidden unit is denoted by 9(') E R. The parameter vector ~ = {(w(l),O(l», . .. ,(w(m),o(m»))

lOne possible solution to this is tbe mean-field approximation [15], discussed furtber in section 2 below.
'In (4) we show tbat any distribution over (±1)" can be approximated to within any desired accuracy by a

harmonium model using 2" bidden units.
lSee also otber work relating Bayes nets and Boltzmann machines [12,1] .
t Noisy-OR gates have been introduced in the framework of Bayes Networks to allow for such combinations.

However, using this in networks with hidden units has not been studied, to the best of our knowledge.
~In (16)[Ch.6J, binary connection weights are used . Here we use real-valued weights .

914 Freund and Haussler

Hidden Units
m=3

Input Units

2:1 2:2 2:3 2:4 2:5

Figure 1: The bipartite graph of the harmonium

defines the entire network, and thus also the probability model induced by the network. For a given ,p, the
energy of a. state configuration of hidden and input units is defined to be

m

E(i, hl~) = - L(w(i) . i + 8(i»)h i (1)
i=!

and the probability of a configuration is

- 1 - ~-Pr(i,hl¢l) = -Ze-E(Z,h l.) where Z = L.,e-;.E(Z,hl.).

z,;;

Summing over h, it is easy to show that in the general case the probability distribution over possible state
vectors on the input units is given by

This product form is particular to the harmonium structure, and does not hold for general Boltzmann
machines. Product form distribution models have been used for density estimation in Projection Pursuit
[10,6,5] . We shall look further into this relationship in section 5.

3 Discussion of the model

The right hand side of Equation (2) has a simple intuitive interpretation . The ith factor in the product
corresponds to the hidden variable h. and is an increasing function of the dot product between i and the
weight vector of the ith hidden unit. Hence an input vector i will tend to have large probability when it is
in the direction of one of the weight vectors WCi) (i .e. when wei) . i is large). and small probability otherwise.
This is the way that the hidden variables can be seen to exert their" influence"; each corresponds to a.
preferred or "prototypical" direction in space .

The next to the last formula. in Equation (2) shows that the harmonium model can be written as a mixture
of 2m distributions of the form

~ exp (f)W(i) . i + 8('»)h.) ,
Z(h) i=!

Unsupervised learning of distributions on binary vectors using 2-layer networks 915

where ii E to, l}m and Z(Ii) is the appropriate normalization factor. It is easily verified that each of these
distributions is in fact a product of n Bernoulli distributions on {+l, -l}, one for each input variable Xj.

Hence the harmonium model can be interpreted as a kind of mixture model. However, the number of
components in the mixture represented by a harmonium is exponential in the number of hidden units.

It is interesting to compare the class of harmonium models to the standard class of models defined by a
mixture of products of Bernoulli distributions. The same bipartite graph described in Figure (1) can be
used to define a standard mixture model. Assign each of the m hidden units a weight vector <.i;) and a
probability Pi such that I:~l Pi = 1. To generate an example, choose one of the hidden units according to
the distribution defined by the Pi'S, and then choose the vector i according to P;(i) = te.;J(·) ·I. where Zi
is the appropriate normalization factor so that LIE{±I}" P;(i) = 1. We thus get the distribution

m
P(i) = L Pi eW(') I

i=1 Z;
(3)

This form for presenting the standard mixture model emphasizes the similarity between this model and the
harmonium model. A vector i will have large probability if the dot product <.ii) ·x is large for some 1 :s i :s m
(so long as Pi is not too small). However, unlike the standard mixture model, the harmonium model allows
more than one hidden variable to be +1 for any generated example. This means that several hidden influences
can combine in the generation of a single example, because several hidden variables can be +1 at the same
time. To see why this is useful, consider the coffee shop example given in the introduction . At any moment
of time it is reasonable to find severa/social groups of people sitting in the shop . The harmonium model will
have a natural representation for this situation, while in order for the standard mixture model to describe
it accurately, a hidden variable has to be assigned to each combination of social groups that is likely to be
found in the shop at the same time. In such cases the harmonium model is exponentially more succinct than
the standard mixture model.

4 Learning by gradient ascent on the log-likelihood

We now suppose that we are given a sample consisting of a set 5 of vectors in {± l}n drawn independently
at random froro some unknown distribution . Our goal is use the sample 5 to find a good model for this
unknown distribution using a harmonium with m hidden units, if possible. The method we investigate here
is the method of maximum likelihood estimation using gradient ascent . The goal of learning is thus reduced
to finding the set of parameters for the harmonium that maximize the (log of the) probability of the set
of examples S. In fact, this gives the standard learning algorithm for general Boltzmann machines. For
a general Boltzmann machine this would require stochastic estimation of the parameters. As stochastic
estimation is very time-consuming, the result is that learning is very slow. In this section we show that
stochastic estimation need not be used for the harmonium model.

From (2), the log likelihood of a sample of input vectors 5 = {;{ I), ;(2), ... ,£(N)}, given a particular setting
¢J = {(w(l), 0(1» •. ..• (w(m) , Oem»~} of the parameters of the model is :

m ()
. . -(.) (.)

10g-hkehhood(¢J) = Lin Pr(i!¢J) = L L In(l + e'" H') - N In Z .
IES .=1 IES

(4)

Taking the gradient of the log-likelihood results in the following formula for the jth component of wei)

{} ~i) log-likelihood(¢) = L x, 1 + e-(W~') 1+9(.1) - N L Pr(il¢J)x, 1 + e-(W!.IH,(,I) (5)
wJ IES IE!:!}"

A similar formula holds for the derivative of the bias term.

The purpose of the clamped and unclamped phases in the Boltzmann machine learning algorithm is to
approximate these two terms. In general, this requires stochastic methods. However , here the clamped term
is easy to calculate, it requires summing a logistic type function over all training examples. The same term

916 Freund and Haussler

is obtained by making the mean field approximation for the clamped phase in the general algorithm [15],
which is exact in this case. It is more difficult to compute the sleep phase term, as it is an explicit sum over
the entire input space, and within each term of this sum there is an implicit sum over the entire space of
configurations of hidden units in the factor Pr(i!,p) . However, again taking advantage of the special structure
of the harmonium, We can reduce this sleep phase gradient term to a sum only over the configurations of the
hidden units, yielding for each component of w(i)

8(i)log-likelibood(¢l) = L: Zj 1 + e-(W~')'I+I('» - N L Pr(hl¢l)h i tanh(E hkWy» (6)
8w j les he{O,I}" k=1

where
Pr(hl¢l) = exp(L~1 hi9(i» 0;=1 cosh(L~l hiW}i» .

E.ii'e{o,I}" exp(E~1 h;9(i» OJ: 1 cosh(L~1 h;wJ'})]

Direct computation of (6) is fast for small m in contrast to the case for general Boltzmann machines (we
have performed experiments with m $ 10). However, for large m it is not possible to compute all 2m

terms. There is a way to avoid this exponential explosion if we can assume that a small number of terms
dominate the sums. If, for instance, we assume that the probability that more than k hidden units are
acti ve (+ I) at the same time is negligibly small we can get a good approximation by computing only O(mk)
terms. Alternately, if we are not sure which states of the hidden units have non-negligible probability, we
can dynamically search, as part of the learning process, for the significant terms in the sum. This way we
get an algorithm that is always accurate, and is efficient when the number of significant terms is small. In
the extreme case where we assume that only one hidden unit is active at a time (i.e. k = 1), the harmonium
model essentially reduces to the standard mixture model as discussed is section 3. For larger k, this type of
assumption provides a middle ground between the generality of the harmonium model and the simplicity of
the mixture model.

5 Projection Pursuit methods

A statistical method that has a close relationship with the harmonium model is the Projection Pursuit (PP)
technique [10,6 i5). The use of projection pursuit in the context of neural networks has been studied by
several researchers (e.g. [11]). Most of the work is in exploratory projection pursuit and projection pursuit
regreSSIOn. In this paper we are interested in projection pursuit dellslty estimation. Here PP avoids the
exponential blowup of the standard gradient ascent technique, and also has that advantage that the number
m of hidden units is estimated from the sample as well, rather than being specified in advance.

Projection pursuit density estimation [6] is based on several types of analysis, using the central limit theorem,
that lead to the following general conclusion. If i E R" is a random vector for which the different coordinates
are Independent, and w E R" is a vector from the n dimellsiollal ullit sphere, then the distribution of the
projectIon w· i is close to gaussian for most w. Thus searching for those directions w for which the projection
of a sample is most non-gaussian is a way for detecting dependencies between the coordinates in high
dimensional distributions . Several "projection-indices" have been studied in the literature for measuring the
"non-gaussianity" of projection, each enhancing different properties of the projected distribution. In order
to find more than one projection direction, several methods of "structure elimination" have been devised .
These methods transform the sample in such a way that the the direction in which non-gaussianity has been
detected appears to be gaussian, thus enabling the algorithm to detect non-gaussian projections that would
otherwise be obscured. The search for a description of the distribution of a sample in terms of its projections
can be formalized in the context of maximal likelihood density estimation [6] . In order to create a formal
relation between the harmonium model and projection pursuit, we define a variant of the model that defines
a density over R" instead of a distribution over {±l}". Based on this form we devise a projection index and
a structure removal method that are the basis of the following learning algorithm (described fully in [4])

• Initialization
Set So to be the input sample.
Set Po to be the initial distribution (Gaussian).

Unsupervised learning of distributions on binary vectors using 2-layer networks 917

• Iteration
Repeat the following steps for i = 1,2 . . . until no single-variable harmonium model has a significantly
higher likelihood than the Gaussian distribution with respect to Si'

1. Perform an estimate-maximize (EM) [2) search on the log-likelihood of a single hidden variable
model on the sample Si-I . Denote by 8i and wei) the parameters found by the search, and create
a new hidden unit with associated binary r. v. hi with these weights and bias.

2. Transform Si-l into Si using the following structure removal procedure.
For each example; E S'_1 compute the probability that the hidden variable h; found in the last
step is 1 on this input:

P(h; = 1) = (1 + e-<I.+W(') .I))-I

Flip a coin that has probability of "head" equal to P(h; = 1). If the coin turns out "head" then
add; - WCi) to S; else add; to Si.

3. Set Pie;) to be Pi_l(i)Z,l (1 + el,+W(').I).

6 Experimental work

We have carried out several experiments to test the performance of unsupervised learning using the harmo
nium model. These are not, at this stage, extensive experimental comparisons, but they do provide initial
insights into the issues regarding our learning algorithms and the use of the harmonium model for learning
real world tasks .

The first set of experiments studies two methods for learning the harmonium model. The first is the gradient
ascent method, and the second is the projection pursuit method . The experiments in this set were performed
on synthetically generated data. The input consisted of binary vectors of 64 bits that represent 8 x 8 binary
images. The images are synthesized using a harmonium model with 10 hidden units whose weights were set
as in Figure (2,a) . The ultimate goal of the learning algorithms was to retrieve the model that generated
the data . To measure the quality of the models generated by the algorithms we use three different measures.
The likelihood.of the model, 6 the fraction of correct predictions the model makes when used to predict the
value of a single input bit given all the other bits, and the performance of the model when used to reconstruct
the inpu t from the most probable state of the hidden units. 7 All experiments use a test set and a train set,
each containing 1000 examples. The gradient ascent method used a standard momentum term, and typically
needed about 1000 epochs to stabilize. In the projection pursuit algorithm, 4 iterations of EM per hidden
unit proved sufficient to find a stable solution . The results are summarized in the following table and in
Figure (2) .

likelihood single bit predictlOn Input reconstructIOn
train test train test train test

gradient ascent for 1000 epochs 0.399 0.425 0.098 0.100 0.311 0.338
proJectIOn pursuit 0.799 0.802 0.119 0.114 0.475 0.480
ProJection pursuit followed by
gradient ascent for 100 epochs 0.411 0.430 0.091 0.089 0.315 0.334
ProJection pursuit followed by
gradient ascent for 1000 epochs 0.377 0.405 0.071 0.082 0.261 0.287
true model 0.372 0.404 0.062 0.071 0.252 0.283

Looking at the table and Figure (2), and taking into account execution times, it appears that gradient
ascent is slow but eventually finds much of the underlying structure in the distribution, although several
of the hidden units (see units 1,2,6,7, counting from the left, in Figure (2,a» have no obvious relation to
the true model, In contrast, PP is fast and finds all of the features of the true model albeit sometimes

aWe present the negation of the log-likelihood, scaled so that the uniform distribution will have likelihood 1.0
1More precisely, for each input unit I we compute the probability p. that it has value +1. Then (or example

(XI, . . . ,1' ..), we measure - L:~.I log,(1/2 + %,(p, - 1/2» .

918 Freund and Haussler

(b)

(c) ,
.

"

.
••••• •••••••

· .. '
' "0· ••• .. ' ·

E;~:·::: ::.::: : ~

.. .. . • -OQ ' D ... • ... ·
· . • CID .C- · •• ·
· :-oj1:. · .. : :,,~t ~.
·08000a ~ . ::DO:O.

. .. ~ ~.: ~~: .. ~.: '

· . ..•. . ' " · .•.. ' "
·• . ['::-,":.t~. ·cc. · 0
.. CICJ· ••
• ·0
.. CODa ... · eO • CO• ~~
:o~~ : ~~~~O::";'

: ••• ~.~ ~ OOOOOJ'
••• DO .. D·
•• •••• • D
• • • • • •• • D

~
!O,:
• •

.:~

: .:;
t:~::~ ~ :~~: : :;; '.

.. DOD -0- .
· D"

..
a.. •. I ..

[XJDOQD
• D
· D.. •
· 0" ,. •• .. , III

..... • • • • ••

. •• gaDa aD •••• · •• · .0 .. a •.
~~~c:-~g . . : .. ~~~ ... 
.•• 0 .• C· · 
' ..... '" .•••• DO· 

---~~:::.,::':::~~~ • •• •• •• .. • .. • •• .. • • ... . . ... • ... I ... . .. • • • • • • • .. .. . ... ... • • •• • ••••••• • ••• 

~~oq2: 2.~ .. . . • . • p . . .............. )D.... . . ........ ... ... .. ... ... . .. . . . · .. ..... .... ... .. 
~a.aa.OO ' . .... .. ···.0 .. ••. •••• .., ..... -a •• D· ........ I ' '' , •••• . ~. .. . . . . . .. .. 
~"'I .~~§ .... . ... ...... -0-. . • I •• ...... aOODaD " •••• • • .. .. ......... .. 
~~ggg:~~ .:.: .. . :.·::8·. :.:·:. :: .. ;::~::: ·~·-:7·: . ::7~~;: ~~::::.::;.~:::. 

<d, wrnrmwlli1iJ~lli1l1J 
Figure 2: The weight vectors of the models in the synthetic data experiments. Each matrix represents the 
64 weights of one hidden unit. The square above the matrix represents the units bias. positive weights are 
displayed as full squares and negative weights as empty squares, the area of the square is proportional to 
the absolute value of the weight. (a) The weights in the model found by gradient ascent alone. (b) The 
weights in the model found by projection pursuit alone. (c) The weights in the model used for generating 
the data. (d) The weights in the model found by projection pursuit followed by gradient ascent. For this 
last model we also show the histograms of the projection of the examples on the directions defined by those 
weight vectors; the bimodality expected from projection pursuit analysis is evident . 

in combinations, However, the error measurements show that something is still missing from the models 
found by our implementation of PP. Following PP by a gradient ascent phase seems to give the best of both 
algoflthms, finding a good approximation after only 140 epochs (40 PP + 100 gradient) and recovering the 
true model almost exactly after 1040 epochs. 

In the second set of experiments we compare the performance of the harmonium model to that of the mixture 
model. The comparison uses real world data extracted from the NIST handwritten data base 8, Examples 
are 16 x 16 binary images (see Figure (3)). We use 60 hidden units to model the distribution in both of the 
models . Because of the large number of hidden units we cannot use gradient ascent learning and instead 
use projection pursuit. For the same reason it was not possible to compute the likelihood of the harmonium 
model and only the other two measures of error were used . Each test was run several times to get accuracy 
bounds on the measurements . The results are summarized in the following table 

smgle bIt predictIon anput reconstructIon 
train test train test 

Mixture model 0.185 ± 0.005 0.258 ± 0.005 0.518 ± 0.002 0.715 ± 0.002 
HarmOnium model 0.20 ± 0.01 0.21 ± om 0.63 ± 0.05 0.66 ± 0.03 

In Figure (4) we show some typical weight vectors found for the mixture model and for the harmonium 
model, it is clear that while the mixture model finds weIghts that are some kind of average prototypes of 
complete digits, the harmonium model finds weights that correspond to local features such as lines and 
contrasts. There is a small but definite improvement in the errors of the harmonium model with respect to 
the errors of the mixture model. As the experiments on synthetic data have shown that PP does not reach 

INIST Special Database 1, HWDB RelI-l.l, May 1990. 



Unsupervised learning of distributions on binary vectors using 2-layer networks 919 

Figure 3: A few examples from the handwritten digits sample. 

.............. 

.:~:I~~~;~L!i: 
ll:~;~~! .l~. 

!::::~ !:·i::::: ......•.... ' 
~~: .. ,~::: ::', 

'.' •••••••• I" 
• " •••• 0 •• •• .. - . .. '" 

: ~::::::.::r::. : .. ,' .. . ..... 
. .••••••••• ·.t • 
. :lIIl"!i:::::; 
::::=,II~ : ::: ;: 
~. :"~''';:::~:: 
'0' •• 1. so ••• 
eo. • • • •••• • •• 
•••••• II . ••• .' . ... ~'~~~~~~' .. ~ 

.. . II... ., . ....... . .......... 
:,ii~~:!:~i ........ -, .... 

;.II'·~ .~~:a:: 
III::;:~,;I~: 
!!i:H' :i:::;: ....... ~ .. 

Figure 4: Typical weight vectors found by the mixture model (left) and the harmonium model (right) 

optimal solutions by itself we expect the advantage of the harmonium model over the mixture model will 
increase further by using improved learning methods. Of course, the harmonium model is a very general 
distribution model and is not specifically tuned to the domain of handwritten digit images, thus it cannot be 
compared to models specifically developed to capture structures in this domain. However, the experimental 
results supports our claim that the harmonium model is a simple and tractable mathematical model for 
describing distributions in which several correlation patterns combine to generate each individual example . 

References 

[1] D. H. Ackley, G. E. Hinton, ILnd T. J. Sejnowski. A learning algorithm for Boltzmann machines. Cognitive 
Science, 9:}47-169 , 1985. 

(2) A. Dempster, N. Laird, CLnd D. Rubin . Maximum likelihood from incomplete data via the EM algorithm. J. 
ROil. Stall!t. Soc. 8, 39:1-38, 1977. 

[3] B. Everitt CLnd D. HlLnd . Finite mixture di,tributlon!. Chapman CLnd Hall. 1981. 

[4J Y. Freund CLnd D. HlLussler. Unsupervised learning of distributions on binary vectors using two Ia.yer networks . 
Technical Report UCSC-CRL-9I-20, Univ. of Calif. Computer ReselLrch Lab, Santa Cruz, CA, 1992 (To appear). 

(5) J. H. Friedman . Exploratory projection pursuit . J. Amer. Stot.Assoc., 82(397) :599-608, Mar . 1987. 

(6) J . H. Friedman, W.Stuetzle, ILnd A. Schroeder. Projection pursuit density estimation. I. Amer. Stat.Auoc., 
79:599-608, 1984. 

(7) H. Ge(ner ILnd J. Peu!. On the probabilistic semantics of connectionist networks. Technical Report CSD-870033, 
UCLA Computer Science Deputment, July 1987. 

[8J S. Geman and D. Geman. Stochutic reluations, Gibbs distributions ILnd the BayesilLn restoration of imlLges. 
IEEE Tron!. on Pattern Analll!i! and Machine Intelligence, 6:721-742, 1984. 

[9J J. Hopfield. Neural networks and physical systems with emergent collective computationallLbilities. Proc. Natl . 
Acad Sci. USA, 79:2554-2558, Apr. 1982. 

[10J P. Huber. Projection pursuit (witb discussion) . Ann. Stat., 13:435-525, 1985. 

(11) N. lntrator. FelLture extraction using an unsupervised neural network . In D. Touretzky, J. Ellman, T. Sejnowski, 
and G. Hinton, editors, Proceeding! 0/ the 1990 COnnectlOnI!t Model! Summer School, pages 310-318. Morgan 
KlLufmlLnn, San Mateo, CA., 1990. 

(12) R. M. Neal. Leuning stochastic feedforwlLrd networks. Technical report, Deputment of Computer Science, 
UniverSity of Toronto, Nov. 1990. 

(13) S. NowlCLn . Ma.ximum likelihood competitive learning. In D. Touretsky, editor, Advance! In Neurolinformation 
Proceumg Sy!teml, volume 2, pages 514-582. Morgan Kau(mlLnn, 1990 . 

[14J J. Peul. Probabi/i!hc Retuoning in Intelligent Sy~tem!. Morgan KlLufmann, 1988. 

(15] C. Peterson and J. R. Anderson. A mean field theory learnillg algorithm (or neural networks. Complex SIiItem! , 
1:995-1019,1987. 

(16) D. E. Rumelhart CLnd J . L. McClelland. Parallel Distributed Proceulng: ExploratIon! In the Mlcro!tructure of 
Cognition . Volume 1,' FoundatIon!. MIT Press, Cambridge, Mass., 1986. 


