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We study a particular type of Boltzmann machine with a bipartite graph structure called a harmo
nium. Our interest is in using such a machine to model a probability distribution on binary input 
vectors . We analyze the class of probability distributions that can be modeled by such machines. 
showing that for each n ~ 1 this class includes arbitrarily good appwximations to any distribution 
on the set of all n-vectors of binary inputs. We then present two learning algorithms for these 
machines .. The first learning algorithm is the standard gradient ascent heuristic for computing 
maximum likelihood estimates for the parameters (i.e. weights and thresholds) of the modeL Here 
we give a closed form for this gradient that is significantly easier to compute than the corresponding 
gradient for the general Boltzmann machine . The second learning algorithm is a greedy method 
that creates the hidden units and computes their weights one at a time. This method is a variant 
of the standard method for projection pursuit density estimation . We give experimental results for 
these learning methods on synthetic data and natural data from the domain of handwritten digits. 

1 Introduction 

Let us suppose that each example in our in put data is a binary vector i = {x I, ... , xn } E {± l}n. and that 
each such example is generated independently at random according some unknown distribution on {±l}n. 
This situation arises. for instance. when each example consists of (possibly noisy) measurements of n different 
binary attributes of a randomly selected object . In such a situation, unsupervised learning can be usefully 
defined as using the input data to find a good model of the unknown distribution on {± l}n and thereby 
learning the structure in the data. 

The process of learning an unknown distribution from examples is usually called denszty estimation or 
parameter estimation in statistics, depending on the nature of the class of distributions used as models. 
Connectionist models of this type include Bayes networks (14). mixture models [3.13], and Markov random 
fields [14,8]. Network models based on the notion of energy minimization such as Hopfield nets [9] and 
Boltzmann machines [1] can also be used as models of probability distributions . 
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The models defined by Hopfield networks are a special case of the more general Markov random field models 
in which the local interactions are restricted to symmetric pairwise interactions between components of 
the input. Boltzmann machines also use only pairwise interactions, but in addition they include hidden 
units , which correspond to unobserved variables. These unobserved variables interact with the observed 
variables represented by components of the input vector. The overall distribution on the set of possible 
input vectors is defined as the marginal distribution induced on the components of the input vector by the 
Markov random field over all variables, both observed and hidden. While the Hopfield network is relatively 
well understood, it is limited in the types of distributions that it can model. On the other hand, Boltzmann 
machines are universal in the sense that they are powerful enough to model any distribution (to any degree 
of approximation), but the mathematical analysis of their capabilities is often intractable. Moreover, the 
standard learning algorithm for the Boltzmann machine, a gradient ascent heuristic to compute the maximum 
likelihood estimates for the weights and thresholds, requires repeated stochastic approximation, which results 
in unacceptably slow learning. I In this work we attempt to narrow the gap between Hopfield networks and 
Boltzmann machines by finding a model that will be powerful enough to be universal, 2 yet simple enough 
to be analyzable and computationally efficient. 3 We have found such a model in a minor variant of the 
special type of Boltzmann machine defined by Smolensky in his harmony theory [16][Ch.6J. This special type 
of Boltzmann machine is defined by a network with a simple bipartite graph structure, which he called a 
harmonium. 

The harmonium consists of two types of units: input units, each of which holds one component of the input 
vector, and hidden units, representing hidden variables. There is a weighted connection between each input 
unit and each hidden unit, and no connections between input units or between hidden units (see Figure (1)) . 
The presence of the hidden units induces dependencies, or correlations, between the variables modeled by 
input units . To illustrate the kind of model that results, consider the distribution of people that visit a 
specific coffee shop on Sunday. Let each of the n input variables represent the presence (+ 1) or absence (-1) 
of a particular person that Sunday. These random variables are clearly not independent, e.g. if Fred's wife 
and daughter are there, it is more likely that Fred is there , if you see three members of the golf club, you 
expect to see other members of the golf club, if Bill is there you are unlikely to see Brenda there, etc. This 
situation can be modeled by a harmonium model in which each hidden variable represents the presence or 
absence of a social group. The weights connecting a hidden unit and an ipput unit measure the tendency of 
the corresponding person to be associated with the corresponding group. In this coffee shop situation, several 
social groups may be present at one time , exerting a combined influence on the distribution of customers. 
This can be mo'deled easily with the harmonium , but is difficult to model using Bayes networks or mixture 
models . <4 

2 The Model 

Let us begin by formalizing the harmonium model. To model a distribution on {±I}" we will use n input 
units and some number m ~ 0 of hidden units. These units are connected in a bipartite graph as illustrated 
in Figure (I) . 

The random variables represented by the input units each take values in {+ I , -I}, while the hidden variables, 
represented by the hidden units, take values in to, I} . The state of the machine is defined by the values 
of these random variables . Define i = (XI," " xn) E {±l}n to be the state of the input units , and h = 
(hi , ... ,hm ) E {O,l}m to be the state of the hidden units . 

The connection weights between the input ~nits and the ith hidden unit are denoted 5 by w(') E Rn and the 
bias of the ith hidden unit is denoted by 9(') E R. The parameter vector ~ = {(w(l),O(l», . .. ,(w(m),o(m»)) 

lOne possible solution to this is tbe mean-field approximation [15], discussed furtber in section 2 below. 
'In (4) we show tbat any distribution over (±1)" can be approximated to within any desired accuracy by a 

harmonium model using 2" bidden units. 
lSee also otber work relating Bayes nets and Boltzmann machines [12,1] . 
t Noisy-OR gates have been introduced in the framework of Bayes Networks to allow for such combinations. 

However, using this in networks with hidden units has not been studied, to the best of our knowledge. 
~In (16)[Ch.6J, binary connection weights are used . Here we use real-valued weights . 
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Hidden Units 
m=3 

Input Units 

2:1 2:2 2:3 2:4 2:5 

Figure 1: The bipartite graph of the harmonium 

defines the entire network, and thus also the probability model induced by the network. For a given ,p, the 
energy of a. state configuration of hidden and input units is defined to be 

m 

E(i, hl~) = - L(w(i) . i + 8(i»)h i (1) 
i=! 

and the probability of a configuration is 

- 1 - ~-Pr(i,hl¢l) = -Ze-E(Z,h l.) where Z = L.,e-;.E(Z,hl.). 

z,;; 

Summing over h, it is easy to show that in the general case the probability distribution over possible state 
vectors on the input units is given by 

This product form is particular to the harmonium structure, and does not hold for general Boltzmann 
machines. Product form distribution models have been used for density estimation in Projection Pursuit 
[10,6,5] . We shall look further into this relationship in section 5. 

3 Discussion of the model 

The right hand side of Equation (2) has a simple intuitive interpretation . The ith factor in the product 
corresponds to the hidden variable h. and is an increasing function of the dot product between i and the 
weight vector of the ith hidden unit. Hence an input vector i will tend to have large probability when it is 
in the direction of one of the weight vectors WCi) (i .e. when wei) . i is large). and small probability otherwise. 
This is the way that the hidden variables can be seen to exert their" influence"; each corresponds to a. 
preferred or "prototypical" direction in space . 

The next to the last formula. in Equation (2) shows that the harmonium model can be written as a mixture 
of 2m distributions of the form 

~ exp (f)W(i) . i + 8('»)h.) , 
Z(h) i=! 
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where ii E to, l}m and Z(Ii) is the appropriate normalization factor. It is easily verified that each of these 
distributions is in fact a product of n Bernoulli distributions on {+l, -l}, one for each input variable Xj. 

Hence the harmonium model can be interpreted as a kind of mixture model. However, the number of 
components in the mixture represented by a harmonium is exponential in the number of hidden units. 

It is interesting to compare the class of harmonium models to the standard class of models defined by a 
mixture of products of Bernoulli distributions. The same bipartite graph described in Figure (1) can be 
used to define a standard mixture model. Assign each of the m hidden units a weight vector <.i;) and a 
probability Pi such that I:~l Pi = 1. To generate an example, choose one of the hidden units according to 
the distribution defined by the Pi'S, and then choose the vector i according to P;(i) = te.;J(·) ·I. where Zi 
is the appropriate normalization factor so that LIE{±I}" P;(i) = 1. We thus get the distribution 

m 
P(i) = L Pi eW(') I 

i=1 Z; 
(3) 

This form for presenting the standard mixture model emphasizes the similarity between this model and the 
harmonium model. A vector i will have large probability if the dot product <.ii) ·x is large for some 1 :s i :s m 
(so long as Pi is not too small). However, unlike the standard mixture model, the harmonium model allows 
more than one hidden variable to be +1 for any generated example. This means that several hidden influences 
can combine in the generation of a single example, because several hidden variables can be +1 at the same 
time. To see why this is useful, consider the coffee shop example given in the introduction . At any moment 
of time it is reasonable to find severa/social groups of people sitting in the shop . The harmonium model will 
have a natural representation for this situation, while in order for the standard mixture model to describe 
it accurately, a hidden variable has to be assigned to each combination of social groups that is likely to be 
found in the shop at the same time. In such cases the harmonium model is exponentially more succinct than 
the standard mixture model. 

4 Learning by gradient ascent on the log-likelihood 

We now suppose that we are given a sample consisting of a set 5 of vectors in {± l}n drawn independently 
at random froro some unknown distribution . Our goal is use the sample 5 to find a good model for this 
unknown distribution using a harmonium with m hidden units, if possible. The method we investigate here 
is the method of maximum likelihood estimation using gradient ascent . The goal of learning is thus reduced 
to finding the set of parameters for the harmonium that maximize the (log of the) probability of the set 
of examples S. In fact, this gives the standard learning algorithm for general Boltzmann machines. For 
a general Boltzmann machine this would require stochastic estimation of the parameters. As stochastic 
estimation is very time-consuming, the result is that learning is very slow. In this section we show that 
stochastic estimation need not be used for the harmonium model. 

From (2), the log likelihood of a sample of input vectors 5 = {;{ I), ;(2), ... ,£(N)}, given a particular setting 
¢J = {(w(l), 0(1» •. ..• (w(m) , Oem»~} of the parameters of the model is : 

m ( ) 
. . -(.) (.) 

10g-hkehhood(¢J) = Lin Pr(i!¢J) = L L In(l + e'" H' ) - N In Z . 
IES .=1 IES 

(4) 

Taking the gradient of the log-likelihood results in the following formula for the jth component of wei) 

{} ~i) log-likelihood(¢) = L x, 1 + e-(W~') 1+9(.1) - N L Pr(il¢J)x, 1 + e-(W!.IH,(,I) (5) 
wJ IES IE!:!}" 

A similar formula holds for the derivative of the bias term. 

The purpose of the clamped and unclamped phases in the Boltzmann machine learning algorithm is to 
approximate these two terms. In general, this requires stochastic methods. However , here the clamped term 
is easy to calculate, it requires summing a logistic type function over all training examples. The same term 
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is obtained by making the mean field approximation for the clamped phase in the general algorithm [15], 
which is exact in this case. It is more difficult to compute the sleep phase term, as it is an explicit sum over 
the entire input space, and within each term of this sum there is an implicit sum over the entire space of 
configurations of hidden units in the factor Pr(i!,p) . However, again taking advantage of the special structure 
of the harmonium, We can reduce this sleep phase gradient term to a sum only over the configurations of the 
hidden units, yielding for each component of w(i) 

8(i)log-likelibood(¢l) = L: Zj 1 + e-(W~')'I+I('» - N L Pr(hl¢l)h i tanh(E hkWy» (6) 
8w j les he{O,I}" k=1 

where 
Pr(hl¢l) = exp(L~1 hi9(i» 0;=1 cosh(L~l hiW}i» . 

E.ii'e{o,I}" exp(E~1 h;9(i» OJ: 1 cosh(L~1 h;wJ'})] 

Direct computation of (6) is fast for small m in contrast to the case for general Boltzmann machines (we 
have performed experiments with m $ 10). However, for large m it is not possible to compute all 2m 

terms. There is a way to avoid this exponential explosion if we can assume that a small number of terms 
dominate the sums. If, for instance, we assume that the probability that more than k hidden units are 
acti ve (+ I) at the same time is negligibly small we can get a good approximation by computing only O( mk) 
terms. Alternately, if we are not sure which states of the hidden units have non-negligible probability, we 
can dynamically search, as part of the learning process, for the significant terms in the sum. This way we 
get an algorithm that is always accurate, and is efficient when the number of significant terms is small. In 
the extreme case where we assume that only one hidden unit is active at a time (i.e. k = 1), the harmonium 
model essentially reduces to the standard mixture model as discussed is section 3. For larger k, this type of 
assumption provides a middle ground between the generality of the harmonium model and the simplicity of 
the mixture model. 

5 Projection Pursuit methods 

A statistical method that has a close relationship with the harmonium model is the Projection Pursuit (PP) 
technique [10,6 i5). The use of projection pursuit in the context of neural networks has been studied by 
several researchers (e.g. [11]). Most of the work is in exploratory projection pursuit and projection pursuit 
regreSSIOn. In this paper we are interested in projection pursuit dellslty estimation. Here PP avoids the 
exponential blowup of the standard gradient ascent technique, and also has that advantage that the number 
m of hidden units is estimated from the sample as well, rather than being specified in advance. 

Projection pursuit density estimation [6] is based on several types of analysis, using the central limit theorem, 
that lead to the following general conclusion. If i E R" is a random vector for which the different coordinates 
are Independent, and w E R" is a vector from the n dimellsiollal ullit sphere, then the distribution of the 
projectIon w· i is close to gaussian for most w. Thus searching for those directions w for which the projection 
of a sample is most non-gaussian is a way for detecting dependencies between the coordinates in high 
dimensional distributions . Several "projection-indices" have been studied in the literature for measuring the 
"non-gaussianity" of projection, each enhancing different properties of the projected distribution. In order 
to find more than one projection direction, several methods of "structure elimination" have been devised . 
These methods transform the sample in such a way that the the direction in which non-gaussianity has been 
detected appears to be gaussian, thus enabling the algorithm to detect non-gaussian projections that would 
otherwise be obscured. The search for a description of the distribution of a sample in terms of its projections 
can be formalized in the context of maximal likelihood density estimation [6] . In order to create a formal 
relation between the harmonium model and projection pursuit, we define a variant of the model that defines 
a density over R" instead of a distribution over {±l}". Based on this form we devise a projection index and 
a structure removal method that are the basis of the following learning algorithm (described fully in [4]) 

• Initialization 
Set So to be the input sample. 
Set Po to be the initial distribution (Gaussian). 



Unsupervised learning of distributions on binary vectors using 2-layer networks 917 

• Iteration 
Repeat the following steps for i = 1,2 . . . until no single-variable harmonium model has a significantly 
higher likelihood than the Gaussian distribution with respect to Si' 

1. Perform an estimate-maximize (EM) [2) search on the log-likelihood of a single hidden variable 
model on the sample Si-I . Denote by 8i and wei) the parameters found by the search, and create 
a new hidden unit with associated binary r. v. hi with these weights and bias. 

2. Transform Si-l into Si using the following structure removal procedure. 
For each example; E S'_1 compute the probability that the hidden variable h; found in the last 
step is 1 on this input: 

P(h; = 1) = (1 + e-<I.+W(') .I))-I 

Flip a coin that has probability of "head" equal to P(h; = 1). If the coin turns out "head" then 
add; - WCi) to S; else add; to Si. 

3. Set Pie;) to be Pi_l(i)Z,l (1 + el,+W(').I). 

6 Experimental work 

We have carried out several experiments to test the performance of unsupervised learning using the harmo
nium model. These are not, at this stage, extensive experimental comparisons, but they do provide initial 
insights into the issues regarding our learning algorithms and the use of the harmonium model for learning 
real world tasks . 

The first set of experiments studies two methods for learning the harmonium model. The first is the gradient 
ascent method, and the second is the projection pursuit method . The experiments in this set were performed 
on synthetically generated data. The input consisted of binary vectors of 64 bits that represent 8 x 8 binary 
images. The images are synthesized using a harmonium model with 10 hidden units whose weights were set 
as in Figure (2,a) . The ultimate goal of the learning algorithms was to retrieve the model that generated 
the data . To measure the quality of the models generated by the algorithms we use three different measures. 
The likelihood.of the model, 6 the fraction of correct predictions the model makes when used to predict the 
value of a single input bit given all the other bits, and the performance of the model when used to reconstruct 
the inpu t from the most probable state of the hidden units. 7 All experiments use a test set and a train set, 
each containing 1000 examples. The gradient ascent method used a standard momentum term, and typically 
needed about 1000 epochs to stabilize. In the projection pursuit algorithm, 4 iterations of EM per hidden 
unit proved sufficient to find a stable solution . The results are summarized in the following table and in 
Figure (2) . 

likelihood single bit predictlOn Input reconstructIOn 
train test train test train test 

gradient ascent for 1000 epochs 0.399 0.425 0.098 0.100 0.311 0.338 
proJectIOn pursuit 0.799 0.802 0.119 0.114 0.475 0.480 
ProJection pursuit followed by 
gradient ascent for 100 epochs 0.411 0.430 0.091 0.089 0.315 0.334 
ProJection pursuit followed by 
gradient ascent for 1000 epochs 0.377 0.405 0.071 0.082 0.261 0.287 
true model 0.372 0.404 0.062 0.071 0.252 0.283 

Looking at the table and Figure (2), and taking into account execution times, it appears that gradient 
ascent is slow but eventually finds much of the underlying structure in the distribution, although several 
of the hidden units (see units 1,2,6,7, counting from the left, in Figure (2,a» have no obvious relation to 
the true model, In contrast, PP is fast and finds all of the features of the true model albeit sometimes 

aWe present the negation of the log-likelihood, scaled so that the uniform distribution will have likelihood 1.0 
1More precisely, for each input unit I we compute the probability p. that it has value +1. Then (or example 

(XI, . . . ,1' .. ), we measure - L:~.I log,(1/2 + %,(p, - 1/2» . 
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Figure 2: The weight vectors of the models in the synthetic data experiments. Each matrix represents the 
64 weights of one hidden unit. The square above the matrix represents the units bias. positive weights are 
displayed as full squares and negative weights as empty squares, the area of the square is proportional to 
the absolute value of the weight. (a) The weights in the model found by gradient ascent alone. (b) The 
weights in the model found by projection pursuit alone. (c) The weights in the model used for generating 
the data. (d) The weights in the model found by projection pursuit followed by gradient ascent. For this 
last model we also show the histograms of the projection of the examples on the directions defined by those 
weight vectors; the bimodality expected from projection pursuit analysis is evident . 

in combinations, However, the error measurements show that something is still missing from the models 
found by our implementation of PP. Following PP by a gradient ascent phase seems to give the best of both 
algoflthms, finding a good approximation after only 140 epochs (40 PP + 100 gradient) and recovering the 
true model almost exactly after 1040 epochs. 

In the second set of experiments we compare the performance of the harmonium model to that of the mixture 
model. The comparison uses real world data extracted from the NIST handwritten data base 8, Examples 
are 16 x 16 binary images (see Figure (3)). We use 60 hidden units to model the distribution in both of the 
models . Because of the large number of hidden units we cannot use gradient ascent learning and instead 
use projection pursuit. For the same reason it was not possible to compute the likelihood of the harmonium 
model and only the other two measures of error were used . Each test was run several times to get accuracy 
bounds on the measurements . The results are summarized in the following table 

smgle bIt predictIon anput reconstructIon 
train test train test 

Mixture model 0.185 ± 0.005 0.258 ± 0.005 0.518 ± 0.002 0.715 ± 0.002 
HarmOnium model 0.20 ± 0.01 0.21 ± om 0.63 ± 0.05 0.66 ± 0.03 

In Figure (4) we show some typical weight vectors found for the mixture model and for the harmonium 
model, it is clear that while the mixture model finds weIghts that are some kind of average prototypes of 
complete digits, the harmonium model finds weights that correspond to local features such as lines and 
contrasts. There is a small but definite improvement in the errors of the harmonium model with respect to 
the errors of the mixture model. As the experiments on synthetic data have shown that PP does not reach 

INIST Special Database 1, HWDB RelI-l.l, May 1990. 
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Figure 3: A few examples from the handwritten digits sample. 
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Figure 4: Typical weight vectors found by the mixture model (left) and the harmonium model (right) 

optimal solutions by itself we expect the advantage of the harmonium model over the mixture model will 
increase further by using improved learning methods. Of course, the harmonium model is a very general 
distribution model and is not specifically tuned to the domain of handwritten digit images, thus it cannot be 
compared to models specifically developed to capture structures in this domain. However, the experimental 
results supports our claim that the harmonium model is a simple and tractable mathematical model for 
describing distributions in which several correlation patterns combine to generate each individual example . 
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