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Abstract

One way of simplifying neural networks so they generalize better is to add
an extra term to the error function that will penalize complexity. We
propose a new penalty term in which the distribution of weight values
is modelled as a mixture of multiple gaussians. Under this model, a set
of weights is simple if the weights can be clustered into subsets so that
the weights in each cluster have similar values. We allow the parameters
of the mixture model to adapt at the same time as the network learns.
Simulations demonstrate that this complexity term is more effective than
previous complexity terms.

1 Introduction

A major problemn in training artificial neural networks is to ensure that they will
generahize well to cases that they have not been tramed ou. Suine recent theoretical
results (Baum and Hanssler, 1939) have suggested that in order to guarantee good
generalization the amount of imformation required 1o dircetly specify the output

vectors of all the tramming cases must be considerably larger than the number of

independent weights i the network In many practical problems there 1s only
a small amount of labelled data available for traming and this creates problems
for any approach that uses a large. homogeneous network with many independent
weights. As a result. there has been much recent interest in techniques that can
train large networks with relatively sinall amounts of labelled data and still provide
good generalization performance.

In order to improve generalization, the number of free parameters in the network
must be reduced. One of the oldest and simplest approaches to removing excess
degrees of freedom from a network is to add an extra term to the error function
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that penalizes complexity:
cost = data-misfit + A complexity (1)

During learning, the network is trying to find a locally optimal trade-off between
the data-misfit (the usual error term) and the complexity of the net. The relative
importance of these two terms can be estimated by finding the value of A that
optimizes generalization to a validation set. Probably the simplest approximation
to complexity is the sum of the squares of the weights, 5, w?. Differentiating
this complexity measure leads to simple weight decay (Plaut, Nowlan and Hinton,
1986) in which each weight decays towards zero at a rate that is proportional to its
magnitude. This decay is countered by the gradient of the error term, so weights
which are not critical to network performance, and hence always have small error
gradients, decay away leaving only the weights necessary to solve the problem.

The use of a 5, w? penalty term can also be interpreted from a Bayesian
perspective.! The “complexity” of a set of weights, A . w?, may be described
as its negative log probability density under a radially symmetric gaussian prior
distribution on the weights. The distribution 1s centered at the origin and has vari-
ance 1/A. For multilayer networks, it is hard to find a good theoretical justification
for this prior, but Hinton (1987) justifies it empirically by showing that it greatly
improves generalization on a very difficult task. More recently, Mackay (1991) has
shown that even better generalization can be achieved by using different values of
A for the weights in different layers.

2 A more complex measure of network complexity

If we wish to eliminate small weights without forcing large weights away from the
values they need to model the data, we can use a prior which is a mixture of a
narrow (n) and a broad (&) gaussian, both centered at zero.
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where 7, and m, are the mixing proportions of the two gaussians and are therefore
constrained to sum to 1.

Assuming that the weight values were generated from a gaussian mixture, the con-
ditional probability that a particular weight, w;, was generated by a particular
gaussian, j, is called the responsibility of that gaussian for the weight and is:
;P (Wwi)

Zk TPk (w,— )

where p;(w;) is the probability density of w; under gaussian j.

(3)

ry(w;) =

When the mixing proportions of the two gaussians are comparable, the narrow gaus-
sian gets most of the responsibility for a small weight. Adopting the Bayesian per-
spective, the cost of a weight under the narrow gaussian is proportional to w?/20?2.
As long as o, is quite small there will be strong pressure to reduce the magnitude

'R. Szeliski, personal communication, 1985.
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of small weights even further. Conversely, the broad gaussian takes most of the
responsibility for large weight values, so there is much less pressure to reduce them.
In the limiting case when the broad gaussian becomes a uniform distribution, there
1s almost no pressure to reduce very large weights because they are almost certainly
generated by the uniforim distribution. A complexity term very similar to this himit-
ing case is used in the “weight elimination” technique of (Weigend, Huberman and
Rumelhart, 1990) to improve generalization for a time series prediction task. *

3 Adaptive Gaussian Mixtures and Soft Weight-Sharing

A mixture of a narrow, zero-mean gaussian with a broad gaussian or a uniform allows
us to favor networks with many near-zero weights, and this improves generalization
on many tasks. But practical experience with hand-coded weight constraints has
also shown that great improvements can be achieved by constraining particular
subsets of the weights to share the same value (Lang, Waibel and Hinton, 1990; Le
Cun, 1989). Mixtures of zero-mean gaussians and uniforms cannot implement this
type of symmetry constraint. 1f however, we use multiple gaussians and allow their
means and variances to adapt as the network learns, we can implement a “soft”
version of weight-sharing m which the learning algorithm decides for itself which
weights should be tied together. (We may also allow the mixing proportions to
adapt so that we are unot assuming all sets of tied weights are the same size.)

The basic idea is that a gaussian which takes responsibility for a subset of the
weights will squeeze those weights together since it can then have a lower variance
and assign a higher probability deunsity to each weight. If the gaussians all start
with high variance, the imtial division of weights into subsets will be very soft. As
the variances shrink and the network learns, the decisions about how to group the
weights into subsets are influenced by the task the network is learning to perforn.

To make these intuitive ideas a bit iore concrete, we 1nay define a cost function of
the general form given in (1):

= &5 o -4~ S S @
T i 3

where 0'3 is the variance of the squared error and each p;(w;) is a gaussian density
with mean p; and standard deviation ;. We optimize this function by adjusting
the w; and the mixture parameters ;, p;, and o5, and o,.>

The partial derivative of C with respect to each weight is the sum of the usual
squared error derivative and a term due to the complexity cost for the weight:

ac K 3. oy = w)
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2See (Nowlan, 1991) for a precise description of the relationship between mixture models
and the model nsed by (Weigend, Huberman and Rumelhart, 1990).

‘Sl/ag may be thought of as playing the same role as A in equation 1 in determining a
trade-off between the misfit and complexity costs. K is a normalizing factor based on a
gaussian error mocel.
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Method Train % Correct | Test % Correct
Vanilla Back Prop. 100.0 £ 0.0 67.3+5.7
Cross Valid. 98.8+ 1.1 83.5+5.1
Weight Elimination 100.0 £ 0.0 89.8+ 3.0
Soft-share - 5 Comp. 100.0£ 0.0 95.6 £ 2.7
Soft-share - 10 Comp. 100.0 £ 0.0 97.11+2.1

Table 1: Summary of generalization performance of 5 different training techniques
on the shift detection problem.

The derivative of the complexity cost term is simply a weighted sum of the difference
between the weight value and the center of each of the gaussians. The weighting
factors are the responsibility measures defined in equation 3 and if over time a
single gaussian claims most of the responsibility for a particular weight the effect
of the complexity cost term is simply to pull the weight towards the center of the
responsible gaussian. The strength of this force is inversely proportional to the
variance of the gaussian.

In the simulations described below, all of the parameters (w;, y5, 05, 7;) are updated
stmultaneously using a conjugate gradient descent procedure. To prevent variances
shrinking too fast or going negative we optimize logo; rather than o;. To ensure
that the mixing proportions sum to | and are positive, we optimize z; where m; =
exp(z;)/ > exp(xy). For further details see (Nowlan and Hinton, 1992).

4 Simulation Results

We compared the generalization performance of soft weight-tying to other tech-
niques on two different problems. The first problem, a 20 input, one output shift
detection network, was chosen because it was binary problem for which solutions
which generalize well exhibit a lot of repeated weight structure. The generalization
performance of networks tramed using the cost criterion given in equation 4 was
compared to networks trained in three other ways: No cost term to penalize com-
plexity; No explicit complexity cost term, but use of a validation set to terminate
learning; Weight elimination (Weigend, Huberman and Rumelhart, 1990)*. The
simulation results are summarized in Table 1.

The network had 20 input units, 10 hidden units, and a single output unit and
contained 101 weights. The first 10 input units in this network were given a random
binary pattern, and the second group of 10 input units were given the same pattern
circularly shifted by 1 bit left or right. The desired output of the network was +1
for a left shift and —1 for a right shift. A data set of 2400 patterns was created by
randomly generating a 10 bit string, and choosing with equal probability to shift
the string left or right. The data set was divided into 100 training cases, 1000
validation cases, and 1300 test cases. The training set was deliberately chosen to
be very small (< 5% of possible patterns) to explore the region in which complexity
penalties should have the largest impact. Ten simulations were performed with each

*With a fixed value of A chosen by cross-validation.
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Figure 1: Final mixture probability density for a typical solution to the shift de-
tection problem. Five of the components in the mixture can be seen as distinct
bumps in the probability density. Of the remaining five components, two have been
eliminated by having their mixing proportions go to zero and the other three are
very broad and form the baseline offset of the density function.

method, starting from ten different initial weight sets (i.e. each method used the
same ten initial weight configurations).

The final weight distributions discovered by the soft weight-tying technique are
shown in Figure 1. There is no significant component with mean (. The classical
assumption that the network contains a large number of inessential weights which
can be elimiated to nnprove generalization is not appropriate for this problem and
network architecture. 'Lhis may explain why the weight elimination model used
by Weigend et al (Weigend, Huberman and Rumelhart, 1990) performs relatively
poorly in this situation.

The second task chosen to evaluate the effectiveness of our complexity penalty was
the prediction of the yearly sunspot average from the averages of previous years.
This task has been well studied as a time-series prediction benchmark in the statis-
tics literature (Priestley, 1991b; Priestley, 1991a) and has also been investigated by
(Weigend, Huberman and Rumelhart, 1990) using a complexity penalty similar to
the one discussed in section 2.

The network architecture used was identical to the one used in the study by Weigend
et al: The network had 12 input units which represented the yearly average from the
preceding 12 years, 8 hidden units, and a sigle linear output unit which represented
the prediction for the average nuinber of sunspots in the current year. Yearly
sunspot data from 1700 to 1920 was used to train the network to perform this one-
step prediction task, and the evaluation of the network was based on data from
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Method Test arv
TAR 0.097
RBF 0.092
WRH 0.086
Soft-share - 3 Comp. | 0.077 & 0.0029
Soft-share - 8 Comp. | 0.072 & 0.0022

Table 2: Summary of average relative variance of 5 different models on the one-step
sunspot prediction problemn.

1921 to 1955.5 The evaluation of prediction performance used the average relative
vartance (arv) measure discussed in (Weigend, Huberman and Rumelhart, 1990).

Simulations were performed using the same conjugate gradient method used for the
first problem. Complexity measures based on gaussian mixtures with 3 and 8 com-
ponents were used and ten simulations were performed with each (using the same
training data but different initial weight configurations). The results of these simu-
lations are summarized in Table 2 along with the best result obtained by Weigend et
al (Weigend, Huberman and Runielhart, 1990) (W RH ), the bilinear auto-regression
model of Tong and Lim (Tong and Lim, 1980) (TAR)®, and the multi-layer RBF
network of He and Lapedes (ITe and Lapedes, 1991) (RBF'). All figures represent
the arv on the test set. For the mixture complexity models, this is the average over
the ten simulations, plus or minus one standard deviation.

Since the results for the models other than the mixture complexity trained networks
are based on a single simulation it is difficult to assign statistical signifigance to the
differences shown in Table 2. We may note however, that the difference between
the 3 and 8 component mixture complexity models is significant (p > 0.95) and the
differences between the & component model and the other models are much larger.

Figure 2 shows an 8 component mixture model of the final weight distribution. It is
quite unlike the distribution in Figure | and is actually quite close to a mixture of
two zero-inean gaussians, one hroad and one narrow. This may explain why weight
elimination works quite well for this task.

Weigend et al point out that for time series prediction tasks such as the sunspot
task a muchi more interesting measure of performance is the ability of the model to
predict more than one thme step to the future. One way 1o approach the multi-
step prediction problem is to use iterated single-step prediction. In this method, the
predicted output is fed back as input for the next prediction and all other input
units have their values shifted back one unit. Thus the input typically consists
of a combination of actual and predicted values. When predicting niore than one
step into the future, the prediction error depends both on how many steps into the
future one i1s predicting (/) and on what point in the time series the prediction
began. An appropriate error measure for iterated prediction is the average relative
I-times iteraled prediction variance (Weigend, ITuberman and Rumelhart, 1990)

®The authors thank Andreas Weigend for providing his version of this data.
®This was the model favored by Priestly (Priestley, 1991a) in a recent evaluation ol
classical statistical approaches to this task.
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Figure 2: Typical final inixture probability density for the sunspot prediction prob-
lem with a model containing 8 mixture components.
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Figure 3: Average relative I-times iterated prediction variance versus number of
prediction iterations for the sunspot time series from 1921 to 1955. Closed circles
represent the 7T'AR model, open circles the WRH model, closed squares the 3
component complexity model, and open squares the 8 component complexity model.
Ten different sets of initial weights were used for the 3 and 8 component complexity
models and one standard deviation error bars are shown.
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which averages predictions I steps into the future over all possible starting points.
Using this measure, the performance of various models is shown in Figure 3.

5 Summary

The simulations we have described provide evidence that the use of a more flexible
model for the distribution of weights in a network can lead to better generalization
performance than weight decay, weight elimination, or techniques that control the
learning time. The flexibility of our model is clearly demonstrated in the very differ-
ent final weight distributions discovered for the two different problems investigated
in this paper. The ability to automatically adapt to individual problems suggests
that the method should have broad applicability.
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