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Abstract 

This paper presents a neural network (NN) approach to the problem of 
stereopsis. The correspondence problem (finding the correct matches 
between the pixels of the epipolar lines of the stereo pair from amongst all 
the possible matches) is posed as a non-iterative many-to-one mapping . A 
two-layer feed forward NN architecture is developed to learn and code this 
nonlinear and complex mapping using the back-propagation learning rule 
and a training set. The important aspect of this technique is that none of 
the typical constraints such as uniqueness and continuity are explicitly 
imposed. All the applicable constraints are learned and internally coded 
by the NN enabling it to be more flexible and more accurate than the 
existing methods. The approach is successfully tested on several random­
dot stereograms. It is shown that the net can generalize its learned map­
ping to cases outside its training set. Advantages over the Marr-Poggio 
Algorithm are discussed and it is shown that the NN performance is supe­
rIOr. 

1 INTRODUCTION 

Three-dimensional image processing is an indispensable property for any advanced 
computer vision system. Depth perception is an integral part of 3-d processing. It 
involves computation of the relative distances of the points seen in the 2-d images 
to the imaging device. There are several methods to obtain depth information. A 
common technique is stereo imaging. It uses two cameras displaced by a known 
distance to generate two images of the same scene taken from these two different 
viewpoints. Distances to objects can be computed if corresponding points are 
identified in both frames. Corresponding points are two image points which 
correspond to the same object point in the 3-d space as seen by the left and the 
right cameras, respectively. Thus, solving the so called "correspondence problem" 
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is the essential stage of depth perception by stereo imaging. 

Many computational approaches to the correspondence problem have been studied 
in the past. An exhaustive review of such techniques is best left to a survey arti­
cles by Dhond and Aggarwal (1989). Common to all such techniques is the 
employment of some constraints to limit computational requirement and also 
reduce the ambiguity. They usually consist of strict rules that are fixed a priori 
and are based on a rough model of the surface to-be-solved. Unfortunately, 
psychophysical evidence of human stereopsis suggest that the appropriate con­
straints are more complex and more flexible to be characterized by simple fixed 
rules. 

In this paper, we suggest a novel approach to the stereo correspondence problem 
via neural networks (NN). The problem is cast into a mapping framework and 
subsequently solved by a NN which is especially suited to such tasks. An impor­
tant aspect of this approach is that the appropriate constraints are automatically 
learned and generalized by the net resulting in a flexible and more accurate model. 

The iterative algorithm developed by Marr and Poggio (1976) for can be regarded 
as a crude neural network approach with no embedded learning. In fact, the ini­
tial stages of the proposed technique follow the same initial steps taken in that 
algorithm. However, the later stages of the two algorithms are quite distinct with 
ours involving a learning process and non-iterative operation. 

There have been other recent attempts to solve the correspondence problem by 
neural networks. Among these are O'Toole (1989), Qian and Sejnowski (1988), 
Sun et al. (1987), and Zhou and Chellappa (1988). These studies use different 
approaches and topologies from the one used in this paper. 

2 DESCRIPTION OF THE APPROACH 

The proposed approach poses the correspondence problem as a mapping problem 
and uses a special kind of NN to learn this mapping. The only constraint that is 
explicitly imposed is the "epipolar" constraint. It states that the match of a point 
in row m of one of the two images can only be located in row m of the other 
image. This helps to reduce the computation by restricting the search area. 

2.1 CORRESPONDENCE PROBLEM AS A MAPPING PROBLEM 

The initial phase of the procedure involves casting the correspondence problem as 
a many to one mapping problem. To explain the method, let us consider a very 
simple problem involving one row (epipolar line) of a stereo pair. Assume 6 pixel 
wide rows and take the specific example of [001110] and [111010] as left and right 
image rows respectively. The task is to find the best possible match between these 
two strings which in this case is [1110]. 

The process starts by forming an "initial match matrix". This matrix includes all 
possible matches between the pixels of the two rows. Fig. 1 illustrates this matrix 
for the considered example. Each 1 indicates a potential match. However only a 
few of these matches are correct. Thus, the main task is to distinguish the correct 
matches which are starred from the false ones. 
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To distinguish the correct matches from the false ones, Marr and Poggio (1976) 
imposed two constraints on the correspondences; (1) uniqueness- that there should 
be a one-to-one correspondence between features in the two eyes, and (2) smooth­
ness - that surfaces should change smoothly in depth. The first constraint means 
that only one element of the match matrix may have a value of 1 along each hor­
izontal and vertical direction. The second constraint translates into a tendency 
for the correct matches to spread along the 45° directions. These constraints are 
implemented through weighted connections between match matrix elements. The 
uniqueness constraint is modeled by inhibitory (negative) weights along the 
horizontal/vertical directions. The smoothness constraint gives rise to excitatory 
(positive) weights along 45° lines. The connections from the rest of elements 
receive a zero (don't care) weight. Using fixed excitatory and inhibitory constants, 
they progressively eliminate false correspondences by applying an iterative algo­
rithm. 

The described row wise matching does not consider the vertical dependency of pix­
els in 2-d images. To account for inter-row relationships, the procedure is 
extended by stacking up the initial match matrices of all the rows to generate a 
three-dimensional "initial match volume", as shown in Fig. 2. Application of the 
two mentioned constraints extends the 2-d excitatory region described above to a 
45 ° oriented plane in the volume while the inhibitory region remains on the 2-d 
plane of the row-wise match. Since depth changes usually happen within a local­
ity, instead of using the complete planes, a subregion of them around each element 
is selected. Fig. 3 shows an example of such a neighborhood. Note that the con­
sidered excitatory region is a circular disc portion of the 45° plane. The choice of 
the radius size (three in this case) is arbitrary and can be varied. A similar itera­
tive technique is applied to the elements of the initial match volume in order to 
eliminate incompatible matches and retain the good ones. 

There are several serious difficulties with the Marr-Poggio algorithm. First, there 
is no systematic method for selection of the best values of the 
excitatory /inhibitory weights. These parameters are usually selected by trial and 
error. Moreover, a set of weights that works well for one case does not necessarily 
yield good results for a different pair of images. In addition, utilization of con­
stant weights has no analogy in biological vision systems. Another drawback 
regards the imposition of the two previously mentioned constraints which are 
based on assumptions about the form of the underlying scene. However, psycho­
physical evidence suggests that the stereopsis constraints are more complex and 
more flexible than can be characterized by simple fixed rules. 

The view that we take is that the described process can be posed as a mapping 
operation from the space of "initial match volume" to the space of "true match 
volume". Such a transformation can be considered as a one-shot (non-iterative) 
mapping from the initial matches to the final ones. This is a complex non-linear 
relationship which is very difficult to model by conventional methods. However, a 
neural net can learn, and more importantly generalize it. 

2.2 NEURAL NETWORK ARCHITECTURE 

The described mapping is a function of the elements in the initial match volume. 
This can be expressed as: 
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where 

t(Xb X2, xs) = 

f= 

i(a, b, c) = 

S= 

t(XI' X2, xs) = f (i(a, b, c) I (a, b, c) ( S) 

state of the node located at coordinate (Xli X2, xs) In the 
true match volume. 

the nonlinear mapping function. 

state of the node located at coordinate (a, b, c) in the ini­
tial match volume. 

A set of three-dimensional coordinates including (Xl, X2, xs) 
and those of its neighbors in a specified neighborhood. 

In such a formulation, if f is known, the task is complete. A NN is capable of 
learning f through examining a set of examples involving initial matches and their 
corresponding true matches. The learned function will be coded in a distributive 
manner as the learned weights of the net. 

Note that this approach does not impose any constraints on the solution. No a 
priora" excitatory/inhibitory assignments are made. Only a unified concept of a 
neighboring region, S, which influences the disparity computation is adopted. The 
influence of the elements in S on the solution is learned by the NN. This means 
that all the appropriate constraints are automatically learned. 

Unlike the Marr-Poggio approach, the NN formulation allows us to consider any 
shape or size for the neighborhood, S. Although in discussions of next sections we 
use a Marr-Poggio type neighborhood as shown in Fig. 3, there is no restriction on 
this. In this work we used this S in order to be able to compare our results with 
those of Marr-Poggio. In a previous study (Khotanzad & Lee (1990)) we used a 
standard fully connected multi-layer feed-forward NN to learn f. The main prob­
lem with that net is the ad hoc selection of the number of hidden nodes. In this 
study, we use another layered feed-forward neural net termed "sparsely connected 
NN with augmented inputs" which does not suITer from this problem. It consists of 
an input layer, an output layer, and one "hidden layer. The hidden layer nodes 
and the output node have a Sigmoid non-linearity transfer function. The inputs 
to this net consist of the state of the considered element in the initial match 
volume along with states of those in its locality as will be described. The response 
of the output node is the computed state of the considered element of the initial 
match volume in the true match volume. The number of hidden nodes are 
decided based on the shape and size of the selected neighborhood, S , as described 
in the example to follow. This net is not a fully connected net and each hidden 
node gets connected to a subset of inputs. Thus the term "sparsely connected" is 
used. 

To illustrate the suggested net, let us use the S of Fig. 3. In this case, each ele­
ment in the initial match volume gets affected by 24 other elements shown by cir­
cles and crosses in the figure. Our suggested network for such an S is shown in 
Fig. 4. It has 625 inputs, 25 hidden nodes and one output node. Each hidden 
node is only connected to one set of 25 input nodes. The 625 inputs consist of 25 
sets of 25 elements of the initial match volume. Let us denote these sets by 
II, 12, ... , 125 respectively. The first set of 25 inputs consists of the state of the 
element of the initial match volume whose final state is sought along with those of 
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its 24 neighbors. Let us denote this node and its neighbors by t and st = 

si, sit "', Si4 respectively. Then 11 = {t, st}. The second set is composed of 
st 

the same type of information for neighbor sr In other words 12 = {si, s l}. 
13• "', 125 are made similarly. So in general 

t _ t 8J 
Ij-{sj, S}, j = 2, 3, ... , 25. 

Note that there is a good degree of overlap among these 625 inputs. However, 
these redundant inputs are processed separately in the hidden layer as explained 
later. Due to the structure of this input, it is referred to as "augmented input". 

The hidden layer consists of 25 nodes, each of which is connected to only one of 
the 25 sets of inputs through weights to be learned. Thus, each node of the hid­
den layer processes the result of evolution of one of the 25 input sets. The effects 
of processing these 25 evolved sets would then be integrated at the single output 
node through the connection weights between the hidden nodes and the output 
node. The output node then computes the corresponding final state of the con­
sidered initial match element. 

Training this net is equivalent to finding proper weights for all of its connections 
as well as thresholds associated with the nodes. This is carried out by the back­
propagation learning algorithm (Rumelhart et. al (1986)). Again note that all the 
weights used in this scheme are unknown and need to be computed through the 
learning procedure with the training set. Thus, the concept of a priori excitatory 
and inhibitory labeling is not used. 

3 EXPERUWENTALSTUDY 

The performance of the proposed neural network approach is tested on several 
random-dot stereograms. A random dot stereogram consists of a pair of similar 
structural images filled with randomly generated black and white dots, with some 
regions of one of the images shifted to either left or right relative to the other 
image. When viewed through a stereoscope, a human can perceive the shifted 
structures as either floating upward or downward according to their relative 
disparities. Stereograms with 50% density (i.e. half black, half white) are used. 

Six 32x32 stereograms with varying disparities are used to teach the network. 
The actual disparity maps (floating surfaces) of these are shown in Fig. 5. Each 
stereogram contains three different depth levels (disparity regions) represented by 
different gray levels. Therefore, six three-dimensional initial match volumes and 
their six corresponding true match volumes comprise the training set for the NN. 
Each initial match volume and its corresponding true match volume contain 323 

input-output pairs. Since six stereo grams are considered, a total of 6x323 input­
output pairs are available for training. 

The performance of the trained net is tested on several random-dot stereograms. 
Fig. 5 shows the results for the same data the net is trained with. In addition the 
performance was tested on other stereo grams that are different from the training 
set. The considered differences include: the shape of the disparity regions, size of 
the image, disparity levels, and addition of noise to one image of the pair. These 
cases are not presented here due to space limitation. We can report that all of 
them yielded very good results. 
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In Fig. 5, the results obtained using the Marr-Poggio algorithm are also shown for 
comparison. Even though it was tried to find the best feed backs for Man-Poggio 
through trial and error, the NN outperformed it in all cases in terms of number of 
error pixels in the resulting disparity map. 

4 CONCLUSION 

In this paper, a neural network approach to the problem of stereopsis was dis­
cussed. A multilayer feed-forward net was developed to learn the mapping that 
retains the correct matches between the pixels of the epipolar lines of the stereo 
pair from amongst all the possible matches. The only constraint that is explicitly 
imposed is the "epipolar" constraint. All the other appropriate constraints are 
learned by example and coded in the nets in a distributed fashion. The net learns 
by examples of stereo pairs and their corresponding depth maps using the back­
propagation learning rule. Performance was tested on several random-dot stereo­
grams and it was shown that the learning is generalized to cases outside the train­
ing. The net performance was also found to be superior to Marr-Poggio algo­
rithm. 
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Figure 1: The initial match matrix for 
the considered example. 
1 represents a match. 
Correct matches are starred. 
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Figure 2: Schematic of the initial match 
volume constructed by stacking 
up row match matrices. 
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Figure 3: The neighborhood structure Figure 4: The sparsely connected NN 
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neighborhood of Fig. 3 is used. 
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Figure 5: The results of disparity computation for six random-dot stereograms 
which are used to train the NN. The Marr-Poggio results are also 
shown. 


