
A Connectionist Learning Control
Architecture for Navigation

Jonathan R. Bachrach
Department of Computer and Information Science

University of Massachusetts
Amherst, MA 01003

Abstract

A novel learning control architecture is used for navigation. A sophisti
cated test-bed is used to simulate a cylindrical robot with a sonar belt
in a planar environment. The task is short-range homing in the pres
ence of obstacles. The robot receives no global information and assumes
no comprehensive world model. Instead the robot receives only sensory
information which is inherently limited. A connectionist architecture is
presented which incorporates a large amount of a priori knowledge in the
form of hard-wired networks, architectural constraints, and initial weights.
Instead of hard-wiring static potential fields from object models, myarchi
tecture learns sensor-based potential fields, automatically adjusting them
to avoid local minima and to produce efficient homing trajectories. It does
this without object models using only sensory information. This research
demonstrates the use of a large modular architecture on a difficult task.

1 OVERVIEW

I present a connectionist learning control architecture tailored for simulated short
range homing in the presence of obstacles. The kinematics of a cylindrical robot
(shown in Figure 1) moving in a planar environment is simulated. The robot has
wheels that propel it independently and simultaneously in both the x and y direc
tions with respect to a fixed orientation. It can move up to one radius per discrete
time step. The robot has a 360 degree sensor belt with 16 distance sensors and
16 grey-scale sensors evenly placed around its perimeter. These 32 values form the
robot's view.

Figure 2 is a display created by the navigation simulator. The bottom portion of

457

458 Bachrach

Figure 1: Simulated robot.

Figure 2: Navigation simulator.

the figure shows a bird's-eye view of the robot's environment. In this display, the
bold circle represents the robot's uhome" position, with the radius line indicating
the home orientation. The other circle with radius line reprelent. the robot's cur
rent position and orientation. The top panel shows the grey-scale view from the
home position, and the next panel down shows the grey-scale view from the robot's
current position. For better viewing, the distance and grey-scale sensor values are
superimposed, and the height of the profile is 1/distance instead of distance. Thus
as the robot gets closer to objects they get taller, and when the robot gets farther
away from objects they get shorter in the display.

The robot cannot move through nor usee" through obstacles (i.e., obstacles are
opaque). The task is for the robot to align itself with the home position from
arbitrary starting positions in the environment while not colliding with obstacles.
This task is performed using only the sensory information-the robot does not have
access to the bird's-eye view.

This is a difficult control task. The sensory information forms a high-dimensional

A Connectionist Learning Control Architecture for Navigation 459

;. -. '~I~') .. ",:.' .it
:. - 1"'" "

Figure 3: The potential field method. This figure shows a contour plot of a terrain
created using potential fields generated from object models. The contour diagram
shows level curves where the grey level of the line depicts the height of the line: the
maximum height is depicted in black, and the minimum height is depicted in white.

continuous space, and successful homing generally requires a nonlinear mapping
from this space to the space of real-valued actions. Further, training networks
is not easily achieved on this space. The robot assumes no comprehensive world
model and receives no global information, but receives only sensory information
that is inherently limited. Furthermore, it is difficult to reach home using random
exploration thereby making simple trial-and-error learning intractable. In order to
handle this task an architecture was designed that facilitates the coding of domain
knowledge in the form of hard-wired networks, architectural constraints, and initial
weights.

1.1 POTENTIAL FIELDS

Before I describe the architecture, I briefly discuss a more traditional technique for
navigation that uses potential fields. This technique involves building explicit object
model. repre.enting the extent and position of object. in the robot'. environment.
Repelling potential fields are then placed around obstacle. using the object models,
and an attracting potential field is placed on the goal. This can be visualized as
a terrain where the global minimum is located at the goal, and where there are
bumps around the obstacles. The robot goes home by descending the terrain. The
contour diagram in Figure 3 shows such a terrain. The task is to go from the top
room to the bottom through the door. Unfortunately, there can be local minima.
In this environment there are two prime examples of minima: the right-hand wall
between the home location and the upper room-opposing forces exactly counteract
each other to produce a local minimum in the right-hand side of the upper room,
and the doorway-the repelling fields on the door frame create an insurmountable
bump in the center of the door.

In contrast, my technique learns a sensor-based potential field model. Instead of
hard-wiring static potential fields from the object models, the proposed architecture

460 Bachrach

Evaluation

Evaluation

State State

2-Net 3-Net

Figure 4: Control architectures.

learns potential fields, automatically adjusting them to both avoid local minima
and produce efficient trajectories. Furthermore, it does this without object models,
using only sensory information.

1.2 2-NET /3-NET ARCHITECTURES

I shall begin by introducing two existing architectures: the 2-net and 3-net architec
tures. These architectures were proposed by Werbos [9] and Jordan and Jacobs [4]
and are also based on the ideas of Barto, Sutton, Watkins [2, 1, 8], and Jordan
and Rumelhart [3]. The basic idea is to learn an evaluation function and then
train the controller by differentiating this function with respect to the controller
weights. These derivatives indicate how to change the controller's weights in order
to minimize or maximize the evaluation function. The 2-net architecture consists
of a controller and a critic. The controller maps states to actions, and the 2-net
critic maps state/action pairs to evaluations. The 3-net architecture consists of a
controller, a forward model, and a critic. The controller maps states to actions, the
forward model maps state/action pairs to next states, and the 3-net critic maps
states to evaluations.

It has been said that it is easier to train a 2-net architecture because there is no
forward model [5]. The forward model might be very complicated and difficult to
train. With a 2-net architecture, only a 2-net critic is trained based on state/action
input pairs. But what if a forward model already exists or even a priori knowledge
exists to aid in explicit coding of a forward model? Then it might be simpler to
use the 3-net architecture because the 3-net critic would be easier to train. It is
based on state-only input and not state/action pairs, and it includes more domain
knowledge.

A Connectionist Learning Control Architecture for Navigation 461

Total Path Length Home

ht-Llne Stralgr
Path L ength

Homing
CrItic

N ext View

+

I

Forward
Model

ControRer

I

Current VIew

Avo ldanee
ength I Path L

Obstacle
Avofd ... ee

CrItic

I

Action

Figure 5: My architecture.

2 THE NAVIGATION ARCHITECTURE

The navigation architecture is a version of a 3-net architecture tailored for naviga
tion, where the state is the robot's view and the evaluation is an estimate of the
length of the shortest path for the robot's current location to home. It consists of a
controller, a forward model, and two adaptive critics. The controller maps views to
actions, the forward model maps view/action pairs to next views, the homing critic
maps views to path length home using a straight line trajectory, and the obstacle
avoidance critic maps views to additional path length needed to avoid obstacles. The
sum of the outputs of the homing critic and the obstacle avoidance critic equals the
total path length home. The forward model is a hard-wired differentiable network
incorporating geometrical knowledge about the sensors and space. Both critics and
the controller are radial basis networks using Gaussian hidden units.

2.1 TRAINING

Initially the controller is trained to produce straight-line trajectories home. With
the forward model fixed, the homing critic and the controller are trained using dead
reckoning. Dead-reckoning is a technique for keeping track of the distance home
by accumulating the incremental displacements. This distance provides a training
signal for training the homing critic via supervised learning.

Next, the controller is further trained to avoid obstacles. In this phase, the obstacle
avoidance critic is added while the weights of the homing critic and forward model
are frozen. Using the method of temporal differences [7] the controller and obstacle
avoidance qitic are adjusted so that the expected path length decreases by one
radius per time step. After training, the robot takes successive one-radius steps

462 Bachrach

" ~ . : j' ~ • 1 " '

,~ ,',; '..~., "',.~. '"i'
I _.~ ? - • ." ••• 'I'

~ . ' I"

Figure 6: An example.

toward its home location.

3 AN EXAMPLE

I applied this architecture to the environment shown in Figure 2. Figure 6 shows
the results of training. The left panel is a contour plot of the output of the homing
critic and reflects only the straight-line distance to the home location. The right
panel is a contour plot of the combined output of the homing critic and the obstacle
avoidance critic and now reflects the actual path length home. After training the
robot is able to form efficient homing trajectories starting from anywhere in the
environment.

4 DISCUSSION

The homing task represents a difficult control task requiring the solution of a number
of problems. The first problem is that there is a small chance of getting home using
random exploration. The solution to this problem involves building a nominal initial
controller that chooses straight-line trajectories home. Next, because the state
space is high-dimensional and continuous it is impractical to evenly place Gaussian
units, and it is difficult to learn continuous mappings using logistic hidden units.
Instead I use Gaussian units whose initial weights are determined using expectation
maximization. This is a soft form of competitive learning [6] that, in my case,
creates spatially tuned units. Next, the forward model for the robot's environments
is very difficult to learn. For this reason I used a hard-wired forward model whose
performance is good in a wide range of environments. Here the philosophy is to
learn only things that are difficult to hard-wire. Finally, the 2-net critic is difficult
to train. Therefore, I split the 2-net critic into a 3-net critic and a hard-wired
forward model.

There are many directions for extending this work. First, I would like to apply this
architecture to real robots using realistic sensors and dynamics. Secondly, I want to

A Connectionist Learning Control Architecture for Navigation 463

to look at long range homing. Lastly, I would like to investigate navigation tasks
involving multiple goals.

Acknowledgements

This material is based upon work supported by the Air Force Office of Scientific
Research, Bolling AFB, under Grant AFOSR-89-0526 and by the National Science
Foundation under Grant ECS-8912623. I would like to thank Richard Durbin, David
Rumelhart, Andy Barto, and the UMass Adaptive Networks Group for their help
on this project.

References

[1] A. G. Barto, R. S. Sutton, and C. Watkins. Sequential decision problems and
neural networks. In David S. Touretzky, editor, Advance" in Neural Informa
tion Proce16ing Sy"tem", P.O. Box 50490, Palo Alto, CA 94303, 1989. Morgan
Kaufmann Publishers.

[2] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neu
ron like adaptive elements that can solve difficult learning control problems.
IEEE Tran"action" on Sy"tem", Man, and Cybernetic", SMC-13(15), Septem
ber/October 1985.

[3] M. I. Jordan and D. E. Rumelhart. Supervised learning with a distal teacher.
1989. Submitted to: Cognitive Science.

[4] Michael I. Jordan and Robert Jacobs. Learning to control an unstable system
with forward modeling. In David S. Touretzky, editor, Advance" in Neural
Information Proce16ing Sy6tem", P.O. Box 50490, Palo Alto, CA 94303, 1989.
Morgan Kaufmann Publishers.

[5] Sridhar Mahadevan and Jonathan Connell. Automatic programming of
behavior-based robots using reinforcemnt learning. Technical report, IBM Re
search Division, T.J. Watson Research Center, Box 704, Yorktown Heights, NY
10598, 1990.

[6] S. J. Nowlan. A generative framework for unsupervised learning. Denver,
Colorado, 1989. IEEE Conference on Neural Information Processing Systems
Natural and Synthetic.

[7] Richard Sutton. Learning to predict by the methods of temporal differences.
Technical report, GTE Laboratories, 1987.

[8] Richard S. Sutton. Temporal Credit A16ignment in Reinforcement Learning.
PhD thesis, Department of Computer and Information Science, University of
Massachusetts at Amherst, 1984.

[9] Paul J. Werbos. Reinforcement learning over time. In T. Miller, R. S. Sut
ton, and P. J. Werbos, editors, Neural Network" for Control. The MIT Press,
Cambridge, MA, In press.

