
VLSI Implementation of TInMANN

Matt Melton Tan Phan Doug Reeves Dave Van den Bout
Electrical and Computer Engineering Dept.
North Carolina State University
Raleigh, NC 27695-7911

Abstract

A massively parallel, all-digital, stochastic architecture - TlnMAN N - is
described which performs competitive and Kohonen types of learning. A
VLSI design is shown for a TlnMANN neuron which fits within a small,
inexpensive MOSIS TinyChip frame, yet which can be used to build larger
networks of several hundred neurons. The neuron operates at a speed of
15 MHz which allows the network to process 290,000 training examples
per second. Use of level sensitive scan logic provides the chip with 100%
fault coverage, permitting very reliable neural systems to be built.

1 INTRODUCTION

Uniprocessor simulation of neural networks has been the norm, but benefiting from
the parallelism in neural networks is impossible without specialized hardware. Most
hardware-based neural network simulators use a single high-speed AL U or multiple
DSP chips connected through communication buses. The first approach does not
allow exploration of the effects of parallelism, while the complex processors used in
the second approach hinder investigations into the minimal hardware needs of an
implementation. Such knowledge can be gained only if an implementation possess
the same characteristics as a neural network - i.e. that it be built from many
simple, cooperating processing elements. However, constructing and connecting
large numbers of processing elements (or neuron,,) is difficult. Highly-connected,
densely-packed analog neurons can be practically realized on a single VLSI chip,
but interconnecting several such chips into a larger system would require many I/O
pins. In addition, external parasitic capacitances and noise can affect the reliable
transfer of data between the chips. These problems are avoided in neural systems

1046

VLSI Implementation of TInMANN 1047

based on noise-resistant digital signals that can be multiplexed over a small number
of wires.

The next section ofthis paper describes the basic theory, algorithm, and architecture
of the TlnMANN digital neural network. The third section illustrates the VLSI
design of a TlnMANN neuron that operates at 15 MHz, is completely testable, and
can be cascaded to form large Kohonen or competitive networks.

2 TlnMANN ALGORITHM AND ARCHITECTURE

In the competitive learning algorithm (Rumelhart, 1986), training vectors oflength
W, V= (Vi, V2,"" vw), are presented to a winner-take-all network of N neurons.
Each neuron i possesses a weight vector of length W, Wi = (Wil' Wi2, ... , WiW),

and a winning neuron k is selected as the one whose weight vector is closest to the
current training vector. Neuron k is then moved closer to the training vector by
modifying its weights as follows

W1cj ¢= Wlcj + f· (Vj - W1cj) 0 < f < I, 1 ~ j ~ W.

H the network is trained with a set of vectors that are naturally clustered into
N groups, then each neural weight vector will eventually reside in the center of a
different group. Thereafter, an input vector applied to the network is encoded by
the neuron that has been sensitized to the cluster containing the input.

Kohonen's self-organizing feature maps (Kohonen, 1982) are trained using a gener­
alization of competitive learning where each neuron i is provided with an additional
X-element vector, Xi = (Zit, Z'2, ... , ZiX), that defines its topological position with
relation to the other neurons in the network. As before, neuron k of the N neurons
wins if it is the closest to the current training vector, but the weight adjustment
now affects all neurons as determined by a decreasing function f of their topological
distance from neuron k and a threshold distance dr:

Wij ¢= Wij + € • f(II X1c - Xi II, dr) . (Vj - Wij) 0 < f < I, 1 < j < W, 1 ~ i < N .

This function allows the winning neuron to drag its neighbors toward a given section
of the input space so that topologically close neurons will eventually react similarly
to closely spaced input vectors.

The integer Markovian learning algorithm of Figure 1 simplifies the Kohonen learn­
ing procedure by noting that the neuron weights slowly integrate the effects of
stimuli. This integration can be done by stochastically updating the weights with
a probability proportional to the neural input. The stochastic update of the neural
weights is done by generating two uncorrelated random numbers, Ri and R 2 , on the
interval [0, dr] that each neuron compares to its distance from the current training
vector and its topological distance from the winning neuron, respectively. A neuron
will try to increment or decrement the elements of its weight vector closer to the
training vector if the absolute value of the intervening distance is greater than R i ,

thus creating a total movement proportional to the distance when averaged over
many cycles. This movement is inversely modulated by the topological distance
to the winning neuron k via a comparison with R2. The total effect produced by
these two stochastic processes is equivalent to that produced in Kohonen's original
algorithm, but only simple additive operations are now needed. Figure 2 shows

1048 Melton, Phan, Reeves, and \an den Bout

for(i ¢= 1 j i :s; N j i ¢= i + 1)
for(i ¢= 1 i i =5 Wi j ¢= j + 1)

Wi; ¢= random()
for(vE {training set})

parallelfor(all neurons i)

k¢=1

di ¢= Ci

for(i ¢= 1; j =5 Wi j ¢= j + 1)
~¢=di+lvi-Wiil

for(i ¢= 1 i i =5 N i i ¢= i + 1)
if(di < die)

k¢=i
parallelfor(all neurons i)

di ¢= 0
for(j ¢= 1 i j ~ X; j ¢= j + 1)

~ ¢= ~ + IZii - zleil
for(j ¢= 1i j ~ Wi j ¢= j + 1)

Rl ¢= random(ch)
R2 ¢= random(ch)
parallelfor(all neurons i)

/* lItochalltic weight update * /
if(Iv; - Wiil > Rl and ds =5 R2)

wii ¢= wii+ sign(vi - Wi;)

Figure 1: The integer Markovian learning algorithm.

our simplified algorithm operates correctly on a problem that has often been solved
using Kohonen networks.

The integer Markovian learning algorithm is practical to implement since only sim­
ple neurons are needed to do the additive operations and a single global bus can
handle all the broadcast transmissions. The high-level architecture for such an im­
plementation is shown in Figure 3. TlnMANN consists of a global controller that
coordinates the actions of a linear array of neurons. The neurons contain circuitry
for comparing and updating their weights, and for enabling and disabling them­
selves during the conditional portions of the algorithm. The network topology is
configured by arranging the neurons in an X-dimensional space rather than by
storing a graph structure in the hardware. This allows the calculation of the topo­
logical distance between neurons using the same circuitry as is used in the weight
calculations. TlnMANN performs the following operations for each training vector:

1. The global controller broadcasts the W elements of v while each neuron accu­
mulates in A the absolute value of the difference between the elements of its
weight vector (stored in the small, local RAM) and those of the training vector.

2. The global controller does a binary search for the neuron closest to the training

VLSI Implementation of TInMANN 1049

r

I II
Figure 2: The evolution of 100 TlnMANN neurons when learning a two­

dimensional vector quantization.

vector by broadcasting distance values bisecting the range containing the win­
ning neuron. The neurons do a comparison and signal on the wired-OR status
line if their distance is less than the broadcast value (i.e. the carry bit c is set).
Neurons with distances greater than the broadcast value are disabled by reset­
ting their e flags. However, if no neuron is left enabled, the controller restores
the enable bits and adjusts its search region (this action is needed on ~ M /2
of the search steps, where M is the machine word length used by TlnMANN).
The last neuron left enabled is the winner of the competition (ties are resolved
by the conditional logic in each neuron).

3. The topological vector of the winning neuron is broadcast to the other neurons
through gate G. The other neurons accumulate into A and store into Tl the
absolute value of the difference between their topological vectors and that of
the winning neuron.

4. Random number R2 is broadcast by the global controller and those neurons
having topological distances in Tl greater than R2 are disabled. The remaining
neurons each compute the distance between a component of their weight vector
and that of the training vector broadcast by the global controller. All neurons
whose calculated distances are greater than random number Rl broadcast by
the controller will increment or decrement their weight elements depending
on the carry bits left in the c flags during the distance calculations. Then
all neurons are re-enabled and this step is repeated for the remaining W - 1
elements of the training vector.

A single training vector can be processed in 11 W + X + 2.5M + 15 clock cycles
(Van den Bout, 1989). A word-width of 10 bits and a clock cycle of 15 MHz would
allow TlnMANN to learn at a rate of 200,000 three-dimensional vectors per second
or 290,000 one-dimensional vectors per second.

3 THE VLSI IMPLEMENTATION OF TlnMANN

Figure 4 is a block diagram for the VLSI TlnMANN neuron built from the compo­
nents listed in Table 1. The design was driven by the following requirements:

Size: The TlnMANN neuron had to fit within a MOSIS TinyChip frame, so we
used small, dense, ripple-carry adders. A 10-bit word size was selected as a

1050 Melton, Phan, Reeves, and \an den Bout

Figure 3: The TlnMANN architecture.

Table 1: Components of the VLSI TlnMANN neuron.

I Component
ABDiff

P

CFLAG
PASum

A

8-word memory

MUX
EFLAG

FUnction
10-bit, two's-complement, npple-borrow subtractor that calculates
differences between data in the neuron and data broadcast on the
global bus (B_Bus).
10-bit pipeline register that temporarily stores the difference out­
put by ABDitf.
Records the sign bit of the difference stored in P.
10-bit, two's-complement, ripple-carry adder/subtract or that adds
or subtracts P from the accumulator depending on the sign bit in
CFLAG. This implements the absolute value function.
Accumulates the absolute values from PASum to form the Manhat­
tan distance between a neuron and a training vector.
Stores the weight and topology vectors, the con6cience register (De­
Sieno, 1988), and one working register.
Steers the output of A or the memory to the input of ABDitf.
Stores the enable bit used for conditionally controlling the neuron
function during the binary search and weight update phases.

VLSI Implementation of TInMANN 1051

!Len a..,path

ramAl err

Figure 4: Block Diagram of the VLSI TlnMANN neuron.

compromise between saving area and retaining numeric precision. The multi­
plexer was added so that A could be used as another temporary register. The
neuron logic was built with the OASIS silicon compiler (Kedem, 1990), but the
memory was hand-crafted to reduce its area. In the final TlnMANN neuron,
4000 transistors are divided between the arithmetic logic (7701' x 13001') and
the memory (7101' x 11601')'

Expandability: The use of broadcast communications reduces the total
TlnMANN chip I/O to only 35 pins. This low connectivity makes it practi­
cal to build large Kohonen networks. At the chip level, the use of a silicon
compiler lets us expand the design if more silicon area becomes available. For
example, the word-size could be readily expanded and the layout automatically
regenerated by changing a single-statement in the hardware description. Also,
higher-dimensional vector spaces could be supported by adding more memory.

Speed: In the worst case, the memory access time is 12 ns, each adder delay is
45 ns, and the write time for A is 10 ns. This would have limited TlnMANN
to a top speed of 9 MHz. P was added to break the critical path through the
adders and bring the clock frequency to 15 MHz. At the board level, the ripple
of status information through the OR gates is sped up by connecting the status
lines through an OR-tree.

Testability: To speed the diagnosis of system failures caused by defective chips,
the TlnMAN N neuron was made 100% testable by building EFLAG, CFLAG, P,
and A from level-sensitive scannable latches. Test patterns are shifted into the
chip through the scanJn pin and the results are shifted out through scan_out.
All faults are covered by only 27 test patterns. A 100% testable neural system
is built by concatenating the scan-in and scan_out pins of all the chips.

1052 Melton, Phan, Reeves, and \an den Bout

Figure 5: Layout of the TlnMANN neuron.

Each component of the TlnMANN neuron was extensively simulated to check for
correct operation. To test the chip I/O, we performed a detailed circuit simulation
of two TlnMAN N neurons organized as a competitive network. The simulation
demonstrated the movement of the two neurons towards the centroids of two data
clusters used to provide training vectors.

Four of the TlnMANN neurons in Figure 5 were fabricated by MOSIS. Using the
built-in scan path, each was found to function at 20 MHz (the maximum speed of
our tester) . These chips are now being connected into a linear neural array and
attached to a global controller.

References

D. E. Van den Bout and T. K. Miller m. "TInMANN: The Integer Markovian
Artificial Neural Network". In IJCNN, pages II:205-II:211, 1989.

D. DeSieno. "Adding a Conscience to Competitive Learning". In IEEE Interna­
tional Conference on Neural NetworklJ, pages 1:117-1:124, 1988.

G. Kedem, F. Brglez, and K. Kozminski. "OASIS: A Silicon Compiler for
Rapid Implementation of Semi-custom Designs". In International WorklJhop on
Rapid SYlJtemlJ Proto typing, June 1990.

T. Kohonen. "Self-Organized Formation of Topologically Correct Feature Maps" .
Biological CyberneticlJ, 43:56-69, 1982.

D. Rumelhart and J. McClelland. Parallel Dilltributed ProcelJlJing: Ezplorations
in the Microstructure of Cognition, chapter 5. MIT Press, 1986.

