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Abstract 
Learning can increase the rate of evolution of a population of 
biological organisms (the Baldwin effect). Our simulations 
show that in a population of artificial neural networks 
solving a pattern recognition problem, no learning or too 
much learning leads to slow evolution of the genes whereas 
an intermediate amount is optimal. Moreover, for a given 
total number of training presentations, fastest evoution 
occurs if different individuals within each generation receive 
different numbers of presentations, rather than equal 
numbers. Because genetic algorithms (GAs) help avoid 
local minima in energy functions, our hybrid learning-GA 
systems can be applied successfully to complex, high­
dimensional pattern recognition problems. 

INTRODUCTION 
The structure and function of a biological network derives from both its 
evolutionary precursors and real-time learning. Genes specify (through 
development) coarse attributes of a neural system, which are then refined 
based on experience in an environment containing more information - and 
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more unexpected infonnation - than the genes alone can represent. Innate 
neural structure is essential for many high level problems such as scene 
analysis and language [Chomsky, 1957]. 

Although the Central Dogma of molecular genetics [Crick, 1970] implies 
that information learned cannot be directly transcribed to the genes, such 
information can appear in the genes through an indirect Darwinian process 
(see below). As such, learning can change the rate of evolution - the 
Baldwin effect [Baldwin, 1896]. Hinton and Nowlan [1987] considered a 
closely related process in artificial neural networks, though they used 
stochastic search and not learning per se. We present here analyses and 
simulations of a hybrid evolutionary-learning system which uses gradient­
descent learning as well as a genetic algorithm, to determine network 
connections. 

Consider a population of networks for pattern recognition, where initial 
synaptic weights (weights "at birth") are detennined by genes. Figure 1 
shows the Darwinian fitness of networks (i.e., how many patterns each can 
correctly classify) as a function the weights. Iso-fitness contours are not 
concentric, in general. The tails of the arrows represent the synaptic 
weights of networks at birth. In the case of evolution without learning, 
network B has a higher fitness than does A, and thus would be 
preferentially selected. In the case of gradient-descent learning before 
selection, however, network A has a higher after-learning fitness, and 
would be preferentially selected (tips of arrows). Thus learning can change 
which individuals will be selected and reproduce, in particular favoring a 
network (here, A) whose genome is "good" (i.e., initial weights "close" to 
the optimal), despite its poor performance at birth. Over many generations, 
the choice of "better" genes for reproduction leads to new networks which 
require less learning to solve the problem - they are closer to the optimal. 
The rate of gene evolution is increased by learning (the Baldwin effect). 

Iso-fitness contours 
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Figure 1: Iso-fitness contours in 
synaptic weight space. The black region 
corresponds to perfect classifications 
(fitness = 5). The weights of two 
networks are shown at birth (tails of 
arrows), and after learning (tips of 
arrows). At birth, 8 has a higher fitness 
score (2) than does A (1); a pure genetic 
algorithm (without learning) would 
preferentially reproduce 8. Wit h 
learning, though, A has a higher fitness 
score (4) than 8 (2), and would thus be 
preferentially reproduced. Since A's 
genes are "better" than 8's, learning can 
lead to selection of better genes. 
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Surprisingly, too much learning leads to slow evolution of the genome, 
since after sufficient training in each generation, all networks can perform 
perfectly on the pattern recognition task, and thus are equally likely to pass 
on their genes, regardless of whether they are "good" or "bad." In Figure 
1, if both A and B continue learning, eventually both will identify all five 
patterns correctly. B will be just as likely to reproduce as A, even though 
A's genes are "better." Thus the rate of evolution will be decreased - too 
much learning is worse than an intermediate amount - or even no -
learning. 

SIMULA TION APPROACH 
Our system consists of a population of 200 networks, each for classifying 
pixel images of the first five letters of the alphabet. The 9 x 9 input grid is 
connected to four 7 x 7 sets of overlapping 3 x 3 orientation detectors; 
each detector is fully connected by modifiable weights to an output layer 
containing five category units (Fig. 2). 
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Figure 2: Individual network architecture. The 9x9 pixel input is detected by each of 
four orientation selective input layers (7x7 unit arrays), which are fully connected by 
trainable weights to the five category units. The network is thus a simple perceptron 
with 196 (=4x7x7) inputs and 5 outputs. Genes specify the initial connection strengths. 

Each network has a 490-bit gene specifying the initial weights (Figure 3). 
For each of the 49 filter positions and 5 categories, the gene has two bits 
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which specify which orientation is initially most strongly connected to the 
category unit (by an arbitrarily chosen factor of 3:1). During training, the 
weights from the filters to the output layer are changed by (supervised) 
perceptron learning. Darwinian fitness is given by the number of patterns 
correctly classified after training. We use fitness-proportional reproduction 
and the standard genetic algorithm processes of replication, mutation, and 
cross-over [Holland, 1975]. Note that while fitness may be measured after 
training, reproduction is of the genes present at birth, in accord with the 
Central Dogma. This is llil1 a Lamarkian process. 
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Figure 3: The genetic representation of a network. For each of the five category units, 
49 two-bit numbers describe which of the four orientation units is most strongly 
connected at each position within the 7x7 grid. This unit is given a relative connection 
strength of 3, while the other three orientation units at that position are given a relative 
strength of 1. 

For a given total number of teaching presentations, reproductive fitness 
might be defined in many ways, including categorization score at the end of 
learning or during learning; such functions will lead to different rates of 
evolution. We show simulations for two schemes: in uniform learning each 
network received the same number (e.g., 20) of training presentations; in 
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distributed learning networks received a randomly chosen number (10, 34, 
36, 16, etc.) of presentations. 

RESULTS AND DISCUSSION 
Figure 4 shows the population average fitness at birth. The lower curve 
shows the performance of the genetic algorithm alone; the two upper curves 
represent genetypic evolution - the amount of information within the genes 
- when the genetic algorithm is combined with gradient-descent learning. 
Learning increases the rate of evolution - both uniform and distributed 
learning are significantly better than no learning. The fitness after learning 
in a generation (not shown) is typically only 5% higher than the fitness at 
birth. Such a small improvement at a single generation cannot account for 
the overall high performance at later generations. A network's performance 
- even after learning - is more dependent upon its ancestors having 
learned than upon its having learned the task. 

Pop. Avg. Fitness at Birth for 
Different Learning Schemes 

= S~--------------------~ ... 
m 

- 4 as 
(t) 
(t) 3 CD 
C 
!:: 
u.. 2 . 
C) 

> cr:: 1 
. 

D.. 
0 0 D.. 

0 20 40 60 80 100 
Generation 

Figure 4: Learning guides the rate of 
evolution. In uniform learning, every 
network in every generation receives 20 
learning presentations; in the distributed 
learning scheme, any network receives a 
number of patterns randomly chosen 
between 0 and 40 presentations (mean = 
20). Clearly, evolution with learning 
leads to superior genes (fitness at birth) 
than evolution without learning. 
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Figure 5: Selectivity of learning­
evolution interactions. Too little or too 
much learning leads to slow evolution 
(population fitness at birth at generation 
100) while an intermediate amount of 
learning leads to significantly higher such 
fitness. This effect is significant in both 
learning schemes. (Each point represents 
the mean of five simulation runs.) 
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Figure 5 illustrates the tuning of these learning-evolution interactions, as 
discussed above: too little or too much learning leads to poorer evolution 
than does an intermediate amount of learning. Given excessive learning 
(e.g., 500 presentations) all networks perform perfectly. This leads to the 
slowest evolution, since selection is independent of the quality of the genes. 

Note too in Fig. 4 that distributed learning leads to significantly faster 
evolution (higher fitness at any particular generation) than uniform learning. 
In the uniform learning scheme, once networks have evolved to a point in 
weight space where they (and their offspring) can identify a pattern after 
learning, there is no more "pressure" on the genes to evolve. In Figure 6, 
both A and B are able to identify three patterns correctly after uniform 
learning, and hence both will reproduce equally. However, in the 
distributed learning scheme, one of the networks may (randomly) receive a 
small amount of learning. In such cases, A's reproductive fitness will be 
unaffected, because it is able to solve the patterns without learning, while 
B's fitness will decrease significantly. Thus in the distributed learning 
scheme (and in schemes in which fitness is determined in part during 
learning), there is "pressure" on the genes to improve at every generation. 
Diversity is, a driving force for evolution. Our distributed learning scheme 
leads to a greater diversity of fitness throughout a population. 

Iso-fitness contours 
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CONCLUSIONS 

Figure 6: Distributed learning leads 
to faster evolution than uniform 
learning. In uniform learning, (shown 
above) A and B have equal reproductive 
fitness, even though A has "better" 
genes. In distributed learning, A will 
be more likely to reproduce when it 
(randomly) receives a small amount of 
learning (shorter arrow) than B will 
under similar circumstances. Thus 
"better" genes will be more likely to 
reproduce, leading to faster evolution. 

Evolutionary search via genetic algorithms is a powerful technique for 
avoiding local minima in complicated energy landscapes [Goldberg, 1989; 
Peterson, 1990], but is often slow to converge in large problems. 
Conventional genetic approaches consider only the reproductive fitness of 
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the genes; the slope of the fitness landscape in the immediate vicinity of the 
genes is ignored. Our hybrid evolutionary-learning approach utilizes the 
gradient of the local fitness landscape, along with the fitness of the genes, in 
detennining survival and reproduction. 

We have shown that this technique offers advantages over evolutionary 
search alone in the single-minimum landscape given by perceptron learning. 
In a simple pattern recognition problem, the hybrid system performs twice 
as well as a genetic algorithm alone. A hybrid system with distributed 
learning, which increases the "pressure" on the genes to evolve at every 
generation, performs four times as well as a genetic algorithm. In addition, 
we have demonstrated that there exists an optimal average amount of 
learning in order to increase the rate of evolution - too little or too much 
learning leads to slower evolution. In the extreme case of too much 
learning, where all networks are trained to perfect performance, there is no 
improvement of the genes. The advantages of the hybrid approach in 
landscapes with multiple minima can be even more pronounced [Stork and 
Keesing, 1991]. 
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