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Abstract 

For lack of alternative models, search and decision processes have provided the 
dominant paradigm for human memory access using two or more cues, despite 
evidence against search as an access process (Humphreys, Wiles & Bain, 1990). 
We present an alternative process to search, based on calculating the intersection 
of sets of targets activated by two or more cues. Two methods of computing 
the intersection are presented, one using information about the possible targets, 
the other constraining the cue-target strengths in the memory matrix. Analysis 
using orthogonal vectors to represent the cues and targets demonstrates the 
competence of both processes, and simulations using sparse distributed 
representations demonstrate the performance of the latter process for tasks 
involving 2 and 3 cues. 

1 INTRODUCTION 

Consider a task in which a subject is asked to name a word that rhymes with oast. The 
subject answers "most", (or post, host, toast, boast, ... ). Now the subject is asked to find 
a word that means a mythical being that rhymes with oast. She or he pauses slighUy and 
replies "ghost". 

The difference between the first and second questions is that the first requires the use of 
one cue to access memory. The second question requires the use of two cues - either 
combining them before the access process, or combining the targets they access. There 
are many experimental paradigms in psychology in which a subject uses two or more 
cues to perform a task (Rubin & Wallace, 1989). One default assumption underlying 
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many explanations for the effective use of two cues relies on a search process through 
memory. 

Models of human memory based on associative access (using connectionist models) have 
provided an alternative paradigm to search processes for memory access using a single cue 
(Anderson, Silverstein, Ritz & Jones, 1977; McClelland & Rumelhart, 1986), and for 
two cues which have been studied together (Humphreys, Bain & Pike 1989). In some 
respects, properties of these models correspond very closely to the characteristics of 
human memory (Rumelhart, 1989). In addition to the evidence against search processes 
for memory access using a single cue, there is also experimental evidence against 
sequential search in some tasks requiring the combination of two cues, such as cued recall 
with an extra-list cue, cued recall with a part-word cue, lexical access and semantic access 
(Humphreys, Wiles & Bain, 1990). Furthermore, in some of these tasks it appears that 
the two cues have never jointly occurred with the target. In such a situation, the tensor 
product employed by Humphreys et. a1. to bind the two cues to the target cannot be 
employed, nor can the co-occurrences of the two cues be encoded into the hidden layer of a 
three-layer network. In this paper we present the computational foundation for an 
alternative process to search and decision, based on parallel (or direct) access for the 
intersection of sets of targets that are retrieved in response to cues that have not been 
studied together. 

Definition of an intersection in the cue-target paradigm: Given a set of cue-target pairs, 
and two (or more) access cues, then the intersection specified by the access cues is defined 
to be the set of targets which are associated with both cues. If the cue-target strengths are 
not binary, then they are constrained to lie between 0 and 1, and targets in the intersection 
are weighted by the product of the cue-target strengths. A complementary definition for a 
union process could be the set of targets associated with anyone or more of the access 
cues, weighted by the sum of the target strengths. 

In the models that are described below, we assume that the access cues and targets are 
represented as vectors, the cue-target associations are represented in a memory matrix and 
the set of targets retrieved in response to one or more cues is represented as a linear 
combination, or blend, of target vectors associated with that cue or cues. Note that under 
this definition, if there is more than one target in the intersection, then a second stage is 
required to select a unique target to output from the retrieved linear combination. We do 
not address this second stage in this paper. 

A task requiring intersection: In the rhyming task described above, the rhyme and 
semantic cues have extremely low separate probabilities of accessing the target, ghost, 
but a very high joint probability. In this study we do not distinguish between the 
representation of the semantic and part-word cues, although it would be required for a 
more detailed model. Instead, we focus on the task of retrieving a target weakly associated 
with two cues. We simulate this condition in a simple task using two cues, C1 and C2, 
and three targets, T1, T2 and T3. Each cue is strongly associated with one target, and 
weakly associated with a second target, as follows (strengths of association are shown 
above the arrows): 
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The intersection of the targets retrieved to the two cues, Cl and C2, is the target, T2, 
with a strength of 0.01. Note that in this example, a model based on vector addition 
would be insufficient to select target, T2, which is weakly associated with both cues, in 
preference to either target, Tl or TJ, which are strongly associated with one cue each. 

2 IMPLEMENTATIONS OF INTERSECTION PROCESSES 

2.1 LOCAL REPRESENTATIONS 

Given a local representation for two sets of targets, their intersection can be computed by 
multiplying the activations elicited by each cue. This method extends to sparse 
representations with some noise from cross product terms, and has been used by Dolan 
and Dyer (1989) in their tensor model, and Touretzky and Hinton (1989) in the 
Distributed Connectionist Production System (for further discussion see Wiles, 
Humphreys, Bain & Dennis, 1990). However, multiplying activation strengths does not 
extend to fully distributed representations, since multiplication depends on the basis 
representation (Le., the target patterns themselves) and the cross-product terms do not 
necessarily cancel. One strong implication of this for implementing an intersection 
process, is that the choice of patterns is not critical in a linear process (such as vector 
addition) but can be critical in a non-linear process (which is necessary for computing 
intersections). An intersection process requires more information about the target patterns 
themselves. 

It is interesting to note that the inner product of the target sets (equivalent to the match 
process in Humphreys et. al.1s (1989) Matrix model) can be used to determine whether or 
not the intersection of targets is empty, if the target vectors are orthogonal, although it 
cannot be used to find the particular vectors which are in the intersection. 

2.2 USING INFORMATION ABOUT TARGET VECfORS 

A local representation enables multiplication of activation strengths because there is 
implicit knowledge about the allowable target vectors in the local representation itself. 
The first method we describe for computing the intersection of fully distributed vectors 
uses information about the targets, explicitly represented in an auto-associative memory, 
to filter out cross-product terms: In separate operatiOns, each cue is used to access the 
memory matrix and retrieve a composite target vector (the linear combination of 
associated targets). A temporary matrix is formed from the outer product of these two 
composite vectors. This matrix will contain product terms between all the targets in the 
intersection set as well as noise in the form of cross-product terms. The cross-product 
terms can be filtered from the temporary matrix by using it as a retrieval cue for accessing 
a three-dimensional auto-associator (a tensor of rank 3) over all the targets in the original 
memory. If the target vectors are orthonormal, then this process will produce a vector 
which contains no noise from cross-product terms, and is the linear combination of all 
targets associated with both cues (see Box 1). 
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Box 1. Creating a temporary matrix from the product of the target vectors, then filtering 
out the noise terms: Let the cues and targets be represented by vectors which are mutually 
orthonormal (Le., Ci.Ci = Ti.Ti = 1, Ci,Cj = Ti.Tj = 0, i, j = 1,2,3). The memory 
matrix, M, is formed from cue-target pairs, weighted by their respective strengths, as 
follows: 

where T' represents the transpose of T, and Cj T;' is the outer product of Cj and Tj • 

In addition, let Z be a three-dimensional auto-associative memory (or tensor of rank 3) 
created over three orthogonal representations of each target (i.e., Tj is a column vector, T;' 
is a row vector which is the transpose of Tj , and Tj " is the vector in a third direction 
orthogonal to both, where i=I,2,3), as follows: 

z = I· T- T-' T·" I I I I 

Let a two-dimensional temporary matrix, X, be formed by taking the outer product of 
target vectors retrieved to the access cues, as follows: 

X = (Cl M) (C2 M)' 

= (0.9Tl + 0.lT2) (0.1T2 + 0.9Tj )' 

= 0.09Tl T2' + 0.81Tl Tj' + 0.01T2T2' + 0.09T2Tj' 

Using the matrix X to access the auto-associator Z, will produce a vector from which all 
the cross-product terms have been flltered, as follows: 

X Z = (0.09Tl T2' + 0.81 TlT3' + 0.01T2T2' + 0.09T2Tj' ) (Ij Tj T;' T;") 

= (0.09TlT2') (Ii Ti T;' T;',) + (0.81Tl Tl) (Ii Tj T;' Ti") 

+ (0.01 T2T2') ( Ii Tj T;' Ti ") + (0.09T2Tj') <l:i Tj T;' T;" ) 

since all other terms cancel. 

This vector is the required intersection of the linear combination of target vectors 
associated with both the input cues, Cl and C2 weighted by the product of the strengths 
of associations from the cues to the targets. 

A major advantage of the above process is that only matrix (or tensor) operations are used, 
which simplifies both the implementation and the analysis. The behaviour of the system 
can be analysed either at the level of behaviours of patterns, or using a coordinate system 
based on individual units, since in a linear system these two levels of description are 
isomorphic. In addition, the auto-associative target matrix could be created incrementally 
when the target vectors are first learnt by the system using the matrix memory. The 
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disadvantages include the requirement for dynamic creation and short term storage of the 
two dimensional product-of-targets matrix, and the formation and much longer term 
storage of the three dimensional auto-associative matrix. It is possible, however, that an 
auto-associator may be part of the output process. 

2.3 ADDITIVE APPROXIMATIONS TO MULTIPLICATIVE PROCESSES 

An alternative approach to using the target auto-associator for computing the intersection, 
is to incorporate a non-linearity at the time of memory storage, rather than memory 
access. The aim of this transform would be to change the cue-target strengths so that 
linear addition of vectors could be used for computing the intersection. An operation that 
is equivalent to multiplication is the addition of logarithms. If the logarithm of each cue
target strength was calculated and stored at the time of association, then an additive access 
process would retrieve the intersection of the inputs. More generally, it may be possible 
to use an operation that preserves the same order relations (in terms of strengths) as 
multiplication. It is always possible to find a restricted range of association strengths 
such that the sum of a number of weak cue-target associations will produce a stronger 
target activation than the sum of a smaller number of strong cue-target associations. For 
example, by scaling the target strengths to the range [(n-l)/n, 1] where n is the number 
of simultaneously available cues, vector addition can be made to approximate 
multiplication of target strengths. 

This method has the advantage of extending naturally to non-orthogonal vectors, and to 
the combination of three or more cues, with performance limits determined solely by 
cross-talk between the vectors. Time taken is proportional to the number of cues, and 
noise is proportional to the product of the set sizes and cross-correlation between the 
vectors. 

3 SIMULATIONS OF THE ADDITIVE PROCESS 

Two simulations of the additive process using scaled target strengths were performed to 
demonstrate the feasibility of the method producing a target weakly associated with two 
cues, in preference to targets with much higher probabilities of being produced in 
response to a single cue. As a work-around for the problem of how (and when) to 
decompose the composite output vector, the target with the strongest correlation with the 
composite output was selected as the winner. To simulate the addition of some noise, 
non-orthogonal vectors were used. 

The first simulation involved two cues, C 1 and C2, and three targets, T1, T2 and T3, 
represented as randomly generated 100 dimensional vectors, 20% Is, the remainder Os. 
Cue C1 was strongly associated with target T1 and weakly associated with target T2, cue 
C2 was strongly associated with target T3 and weakly associated with target T2. A trial 
consisted of generating random cue and target vectors, forming a memory matrix from 
their outer products (multiplied by 0.9 for strong associates and 0.6 for weak associates; 
note that these strengths have been scaled to the range, [0,1]), and then pre-multiplying 
the memory matrix by the appropriate cue (i.e., either C1 or C2 or C1 + C2). 



640 Wiles, Humphreys, Bain, and Dennis 

The memory matrix, M, was formed as shown in Box 1. Retrieval to a cue, Cl , was as 
follows: C1 M = 0.9 C1 .Cz Tz' + 0.6 C1 .C1 T2 ' + 0.6 C1 .C2 T2 ' + 0.9 C1.C2 T/. In 
this case, the cross product terms, Cl.C2, do not cancel since the vectors are not 
orthogonal, although their expected contribution to the output is small (expected 
correlation 0.04). The winning target vector was the one that had the strongest 
correlation (smallest normalized dot product) with the resulting output vector. The results 
are shown in Table 1. 

Table 1: Number of times each target was retrieved in 100 trials. 

c1 
c2 

c1+c2 

t1 

92 
o 
11 

t2 

8 
9 
80 

t3 

o 
91 
9 

Over 100 trials, the results show that when either cue Cl or C2 was presented alone, the 
target with which it was most strongly paired was retrieved in over 90% of cases. Target 
T2 had very low probabilities of recall given either Cl or C2 (8% and 9% respectively), 
however, it was very likely to be recalled if both cues were presented (80%). 

The first simulation demonstrated the multi-cue paradigm with the simple two-cue and 
three-target case. In a second simulation, the system was tested for robustness in a 
similar case involving three cues, C 1 to C 3, and four targets, T 1 to T 4. The results 
show that T4 had low probabilities of recall given either Cl , C2 or C3 (13%, 22% and 
18% respectively), medium probabilities of recall given a combination of two cues (36%, 
31 % and 28%), and was most likely to be recalled if all three cues were presented (44%). 
For this task, when three cues are presented concurrently, in the ideal intersection only T4 
should be produced. The results show that it is produced more often than the other targets 
(44% compared with 22%, 18% and 16%), each of which is strongly associated with two 
out of the three cues, but there is considerably more noise than in the two-cue case. (See 
Wiles, Humphreys, Bain & Dennis, 1990, for further details.) 

4 DISCUSSION 

The simulation results demonstrated the effect of the initial scaling of the cue-target 
strengths, and non-linear competition between the target outputs. It is important to note 
the difference between the association strengths from cues to targets and the cued recall 
probability of each target. In memory research, the association strengths have been 
traditionally identified with the probability of recall. However, in a connectionist model 
the association strengths are related to the weights in the network and the cued recall 
probability is the probability of recall of a given target to a given cue. 

This paper builds on the idea that direct access is the default access method for human 
memory, and that all access processes are cue based. The immediate response from 
memory is a blend of patterns, which provide a useful intermediate stage. Other processes 
may act on the blend of patterns before a single target is selected for output in a 
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successive stage. One such process that may act on the intermediate representation is an 
intersection process that operates over blends of targets. Such a process would provide an 
alternative to search as a computational technique in psychological paradigms that use 
two or more cues. We don't claim that we have described the way to implement such a 
process - much more is required to investigate these issues. The two methods presented 
here have served to demonstrate that direct access intersection is a viable neural network 
technique. This demonstration means that more processing can be performed in the 
network dynamics, rather than by the control structures that surround memory. 

Acknowledgements 

Our thanks to Anthony Bloesch, Michael Jordan, Julie Stewart, Michael Strasser and 
Roland Sussex for discussions and comments. This work was supported by grants from 
the Australian Research Council, a National Research Fellowship to J. Wiles and an 
Australian Postgraduate Research Award to S. Dennis. 

References 

Anderson, J.A., Silverstein, J.W., Ritz, S.A. and Jones, R.S. Distinctive features, 
categorical perception, and probability learning: Some applications of a neural model. 
Psychological Review, 84,413-451, 1977. 

Dolan, C. and Dyer, M.G. Parallel retrieval and application of conceptual knowledge. 
Proceedings of the 1988 Connectionist Models Summer School, San Mateo, Ca: 
Morgan Kaufmann, 273-280, 1989. 

Humphreys, M.S., Bain, J.D. and Pike, R. Different ways to cue a coherent memory 
system: A theory for episodic, semantic and procedural tasks. Psychological Review, 
96:2, 208-233, 1989. 

Humphreys, M.S., Wiles, J. and Bain, J.D. Direct Access: Cues with separate histories. 
Paper presented at Attention and Performance 14, Ann Arbor, Michigan, July, 1990. 

McClelland, J.L. and Rumelhart, D.E. A distributed model of memory. In McClelland, 
J.L. and Rumelhart, D.E. (eds.) Parallel Distributed Processing: Explorations in the 
microstructure of cognition, 170-215, MIT Press, Cambridge, MA, 1986. 

Rubin, D.C. and Wallace, W.T. Rhyme and reason: Analysis of dual retrieval cues. 
Journal of Experimental Psychology: Learning, Memory and Cognition, 15:4, 698-
709, 1989. 

Rumelhart, D.S. The architecture of mind: A connectionist approach. In Posner, M.1. 
(ed.) Foundations of Cognitive Science, 133-159, MIT Press, Cambridge, MA, 1989. 

Touretzky, D.S. and Hinton, G.E. A distributed connectionist production system. 
Cognitive Science, 12, 423-466, 1988. 

Wiles, J., Humphreys, M.S., Bain, J.D. and Dennis, S. Control processes and cue 
combinations in a connectionist model of human memory. Department of Computer 
Science Technical Report, #186, University of Queensland, October 1990, 40pp. 


