
Multi-Layer Perceptrons 
with B-SpIine Receptive Field Functions 

Stephen H. Lane, Marshall G. Flax, David A. Handelman and JackJ. Gelfand 

Human Information Processing Group 
Department of Psychology 

Princeton University 
Princeton, New Jersey 08544 

ABSTRACT 

Multi-layer perceptrons are often slow to learn nonlinear functions 
with complex local structure due to the global nature of their function 
approximations. It is shown that standard multi-layer perceptrons are 
actually a special case of a more general network formulation that 
incorporates B-splines into the node computations. This allows novel 
spline network architectures to be developed that can combine the 
generalization capabilities and scaling properties of global multi-layer 
feedforward networks with the computational efficiency and learning 
speed of local computational paradigms. Simulation results are 
presented for the well known spiral problem of Weiland and of Lang 
and Witbrock to show the effectiveness of the Spline Net approach. 

1. INTRODUCTION 

Recently, it has been shown that multi-layer feedforward neural networks, such as 
Multi-Layer Perceptrons (MLPs) , are theoretically capable of representing arbitrary 
mappings, provided that a sufficient number of units are included in the hidden layers 
(Hornik et aI., 1989). Since all network weights are updated with each training 
exemplar, these networks construct global approximations to multi-input/multi-output 
function data in a manner analogous to fitting a low-order polynomial through a set of 
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data points. This is illustrated by the cubic polynomial "Global Fit" of the data points 
in Fig. 1. 

I 

~LocalFit 

~GlobaiFit 

Figure 1. Global vs. Local Function Approximation 

Consequently, multi-layer perceptrons are capable of generalizing (extrapolating! 
interpolating) their response to regions of the input space where little or no training data 
is present, using a quantity of connection weights that typically scales quadratically 
with the number of hidden nodes. The global nature of the weight updating, however, 
tends to blur the details of local structures, slows the rate of learning, and makes the 
accuracy of the resulting function approximation sensitive to the order of presentation 
of the training data. 

It is well known that many sensorimotor structures in the brain are organized using 
neurons that possess locally-tuned overlapping receptive fields (Hubel and Wiesel, 
1962). Several neural network computational paradigms such as CMACs (Cerebel1ar 
Model Articulation Controllers) (Albus, 1973) and Radial Basis Functions (RBFs) 
(Moody and Darken, 1988) have been quite successful representing complex nonlinear 
functions using this same organizing principle. These networks construct local 
approximations to multi-input/multi-output function data that are analogous to fitting a 
least-squares spline through a set of data points using piecewise polynomials or other 
basis functions. This is illustrated as the cubic spline "Local Fit" in Fig. 1. The main 
benefits of using local approximation techniques to represent complex nonlinear 
functions include fast learning and reduced sensitivity to the order of presentation of 
training data. In many cases, however, in order to represent the function to the desired 
degree of smoothness, the number of basis functions required to adequately span the 
input space can scale exponentially with the number of inputs (Lane et aI., 1991a,b). 

The work presented in this paper is part of a larger effort (Lane et aI, 1991a) to develop 
a general neural network formulation that can combine the generalization capabilities 
and scaling properties of global multi-layer feed forward networks with the 
computational efficiency and learning speed of local network paradigms. It is shown in 
the sequel that this can be accomplished by incorporating B-Spline receptive fields into 
the node connection functions of Multi-Layer Perceptrons. 
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2. MULTI·LAYER PERCEPTRONS 
WITH B·SPLINE RECEPTIVE FIELD FUNCTIONS 

Standard Multi-Layer Perceptrons (MLPs) can be represented using node equations of 
the form, 

(1) 

where llL is the number of nodes in layer L and the cf; are linear connection functions 

between nodes in layers Land (L-1) such that, 

(2) 

0'(-) is the standard sigmoidal nonlinearity, yf-l is the output of a node in layer L-1, 

y~-l = 1, and the wf; are adjustable network weights. Some typical linear connection 

functions are shown in Fig. 2. cfo corresponds to a threshold input. 
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Figure 2. Typical MLP Node Connection Functions 

Incorporating B-Spline receptive field functions (Lane et aI., 1991a) into the node 
computations of eq. (1) allows more general connection functions (e.g. piecewise linear, 
quadratic, cubic, etc.) to be formulated. The corresponding B-Spline MLP (Spline Net) 
is derived by redefining the connection functions of eq. (2) such that, 

L( L-l) \' L BG ( L-l) cij Yj = ~ W ijk nk Yj (3) 

This enables the construction of a more general neural network architecture that has 
node equations of the form, 

L 
Yi = (4) 
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The B~(Yf-1) are B-spline receptive field functions (Lane et al» 1989,19913) of order 

n and support G» while the 'wtk are the spline network weights. The order, n» 

corresponds to the number of coefficients in the polynomial pieces. For example, linear 
splines are of order n=2» whereas cubic splines are of order n=4. The advantage of the 
more general B-Spline connection functions of eq. (3) is that it allows varying degrees 
of "locality" to be added to the network computations since network weights are now 

activated based on the value of yf-1. The wtk are modified by backpropagating the 

output error only to the G weights in each connection function associated with active 

(i.e. nonzero) receptive field functions. The Dh-Iayer weights are updated using the 
method of steepest descent learning such that, 

L L f3 L L(I L)BG ( L-1) 
Wijk Eo- W ijk + ej Yi - Yi nk Yj (5) 

where ef is the output error back-propagated to the ith node in layer L and ~ is the 
learning rate (Lane et aI., 19913). In the more general Spline Net formulation of eqs. 
(3-5), each node input has P+G-1 receptive fields and P+G-1 weights associated with it, 
but only G are active at anyone time. P determines the number of partitions in the 
input space of the connection functions. Standard MLP networks are a degenerate case 
of the Spline Net architecture» as they can be realized with B-Spline receptive field 
functions of order n=2, with P=1 and G=2. Due to the connectivity of the B-Spline 
receptive field functions, for the case when P> 1, the resulting network architecture 
corresponds to multiply-connected MLPs» where any given MLP is active within only 
one hypercube in the input space, but has weights that are shared with MLPs on the 
neighboring hypercubes. The amount of computation required in each layer of a Spline 
Net during both learning and function approximation is proportional to G, and 
independent of P. 

Formulating the connection functions of eq. (3) with linear (n=2) B-Splines allows 
connection functions such as those shown in Fig. 3 to be learned. 

Figure 3. Spline Net Connection Functions Using Linear B-Splines (n=2) 

The connection functions shown in Fig. 3 have P=4 partitions (5 knots) on the interval 

yj-1 E[O,1]. The number of input partitions, P» determines the degree of locality of 
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the resulting function approximation since the local shape of the connection function is 
determined from the current node input activation interval. 

Networks constructed using the Spline Net formulation are reminiscent of the form and 
function of Kolmogorov-Lorenz networks (Baron and Baron, 1988). A neurobiological 
interpretation of a Spline Net is that it is composed of neurons that have dendritic 
branches with synapses that operate as a function of the level of activation at a given 
node or network input. This is shown in the network architecture of Fig. 4b where the 
standard three-layer MLP network of Fig. 4a has been redrawn using B-Spline receptive 
field functions with n=2, P=4 and G=2. 

Figure 4. Three-Layer Spline Net Architecture, n=2,P=4,G=2 

~- , 
5 

The horizontal arrows projecting from the right of each network node in Fig. 4b 
represent the node outputs. The overlapping triangles on the node output represent the 
receptive field functions of neurons in the next layer. These receptive field functions 
are summed with weighted connections in the dendritic branches to form the inputs to 
the next network layer. In the architecture shown in Fig. 4b, only two receptive fields 
are active for any given value of a node output. Therefore for this single hidden-layer 
network architecture, given any value for the inputs (x1,xV, at most Nw = 30 weights 

will be active where, 
(6) 

s is the number of network inputs and 11 is the number of nodes in the hidden layer, 
which for this case is 2s+ 1 = 5. 
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3. SIMULATION RESULTS 

In order to evaluate the impact of local computation on MLP performance, the well 
known spiral problem of Weiland and of Lang and Witbrock (1988) was chosen as a 
benchmark. Simulations were conducted using a Spline Net architecture having one 
hidden layer with 5 hidden nodes and linear B-Splines with support, G=2 (Fig. 4). All 
trials used the "vanilla" back-prop learning rule of eq. (5) with ~ = l/{2P). The 
connection function weights were initialized in each node such that the resulting 
connection functions were continuous linear functions with arbitrary slope. From 
previous experience (Lane et aI., 1989), it was known that the number of receptive field 
partitions can drastically affect network learning and performance. Therefore, the 
connection function partitions were bifurcated during training to see the effect on 
network generalization capability and learning speed. The bifurcation consisted of 
splitting every receptive field in half after increments of lOOK (100,(00) training 
points, each time doubling the number of connection function partitions and weights in 
the network nodes. A more adaptive approach would monitor the slope of the learning 
curve to determine when to split the partitions. New weights were initializing such that 
the connection functions before and after the bifurcation retained the same shape. All 
simulation results presented in Figs. 5-12 were generated using 800K training points. 

The left-most column of Fig. 5 represents the two learned connection functions that 
lead to each hidden node depicted in Fig. 4. The elements in the second column are the 
hidden node response to excitation over the unit square, while the plots in the third 
column are the connection functions from the hidden layer to the output node. The 
fourth column shows the hidden node outputs after being passed through their 
respective connection functions. The network output shown in the fifth column is the 
algebraic sum of the hidden node responses shown in the fourth column. The Spline 
Net was initialized as a standard MLP with P=1. Figure 6 shows the evolution of the 
two connection functions to the third hidden node in Fig. 4 after every lOOK training 
points. Around 400K (P=8) the connection functions start to take on a characteristic 
shape. For 1'>8, the creation of additional partitions has little effect on the shape of the 
connection functions. Figure 7 shows the associated learning curve, while Fig. 8 is an 
enlarged version of the network output. These results indicate that the bifurcation 
schedule introduces additional degrees of freedom (weights) to the network in such a 
way as to carve out coarse global features first, then incrementally capture finer and 
finer localized details later. This is in contrast to the results shown in Figs. 9 and 10 
where the training (using the same 800K points as in Figs. 7 and 8) was begun on a 
network having P=l28 initial partitions. Figure 11 shows the Spline Net output after 
800K training iterations using 112 discrete points located on the two spirals. Lang and 
Witbrock (1988) state that similar spiral results could only be obtained using a MLP 
network with 3 hidden layers (including jump connections) and 50,000,000 training 
iterations. The use of a Spline Net with a bifurcation schedule enabled the learning to 
be sped up by almost two orders of magnitude, indicating there is a significant 
performance advantage in trading-off number of hidden layers for node complexity. 
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Figure 5. Spiral Learning with Bifurcation Schedule 
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Figure 6. Evolution of Connection Functions to Third Hidden Node 
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Figure 7. Learning Curve with Bifurcation Schedule 
Mean Square Error vs. Training Iteration 
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Figure 9. Learning Curve without Bifurcation Schedule 
Mean Square Error vs. Training Iteration 

3000 
~ 

~ 
2500 

2000 

1500 

1000 

\ 
\ 

'" : 
~ i 

500 ~ 
; 

-" 
~ ,e ~ 

o 
o 200 400 600 800 1000 

Figure 11. Learning Curve with Bifurcation Schedule 
Mean Square Error vs. Training Iteration 

(112 Discrete Points) 

Figure 8. Output Node Response 

with Bifurcation 

Figure 10. Output Node Response 

without Bifurcation 

Figure 12. Output Node Response 

with Bifurcation 

(112 Discrete Points) 
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4. CONCLUSIONS 

It was shown that the introduction of B-Splines into the node connection functions of 
Multi-Layer Perceptrons allows more general neural network architectures to be 
developed. The resulting Spline Net architecture combines the fast learning and 
computational efficiency of strictly local neural network approaches with the scaling 
and generalization properties of the more established global MLP approach. Similarity 
to Kolmogorov-Lorenz networks can be used to suggest an initial number of hidden 
layer nodes. The number of node connection function partitions chosen affects both 
network generalization capability and learning performance. It was shown that use of a 
bifurcation schedule to determine the number of node input partitions speeds learning 
and improves network generalization. Results indicate that Spline Nets solve difficult 
learning problems by trading-off number of hidden layers for node complexity. 
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