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Abstract 

Through the use of neural network classifiers and careful feature selection, 
we have achieved high-accuracy speaker-independent spoken letter recog
nition. For isolated letters, a broad-category segmentation is performed 
Location of segment boundaries allows us to measure features at specific 
locations in the signal such as vowel onset, where important information 
resides. Letter classification is performed with a feed-forward neural net
work. Recognition accuracy on a test set of 30 speakers was 96%. Neu
ral network classifiers are also used for pitch tracking and broad-category 
segmentation of letter strings. Our research has been extended to recog
nition of names spelled with pauses between the letters. When searching 
a database of 50,000 names, we achieved 95% first choice name retrieval. 
Work has begun on a continuous letter classifier which does frame-by-frame 
phonetic classification of spoken letters. 

1 INTRODUCTION 

Although spoken letter recognition may seem like a modest goal because of the 
small vocabulary size, it is a most difficult task. Many letter pairs, such as M-N 
and B-D, differ by a single articulatory feature. Recent advances in classification 
technology have enabled us to achieve new levels of accuracy on this task [Cole 
et ai., 1990, Cole and Fanty, 1990, Fanty and Cole, 1990]. The EAR (English 
Alphabet Recognition) system developed in our laboratory recognizes letters of the 
English alphabet, spoken in isolation by any speaker, at 96% accuracy. We achieve 
this level of accuracy by training neural network classifiers with empirically derived 
features-features selected on the basis of speech knowledge, and refined through 
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experimentation. This process results in significantly better performance than just 
using "raw" data such as spectral coefficients. 

We have extended our research to retrieval of names from spellings with brief pauses 
between the letters, and to continuous spellings. This paper provides an overview of 
these systems with an emphasis on our use of neural network classifiers for several 
separate components. In all cases, we use feedforward networks, with full connec
tivity between adjacent layers. The networks are trained using back propagation 
with conjugate gradient descent. 

2 ISOLATED LETTER RECOGNITION 

2.1 SYSTEM OVERVIEW 

Data capture is performed using a Sennheiser HMD 224 noise-canceling micro
phone, lowpass filtered at 7.6 kHz and sampled at 16 kHz per second. 

Signal processing routines produce the following representations every 3 msecs: 
(a) zero crossing rate: the number of zero crossings of the waveform in a 10 msec 
window; (b) amplitude: the peak-tO-peak amplitude (largest positive value minus 
largest negative value) in a 10 msec window in the waveform; (c) filtered amplitude: 
the peak-tO-peak amplitude in a 10 msec window in the waveform lowpass filtered 
at 700 Hz; (d) DFT: a 256 point FFT (128 real numbers) computed on a 10 msec 
Hanning window; and (e) spectral difference: the squared difference of the averaged 
spectra in adjacent 24 msec intervals. 

Pitch tracking is performed with a neural network which locates peaks in the 
filtered (0-700 Hz) waveform that begin pitch periods. described in section 2.2. 

Broad-category segment ion divides the utterance into contiguous intervals and 
assigns one of four broad category labels to each interval: CLOS (closure or back
ground noise), SON (sonorant interval), FRIC (fricative) and STOP. The segmenter, 
modified from [April 1988], uses cooperating knowledge sources which apply rules 
to the signal representations, most notably ptpO-700, pitch and zcO-8000. 

Feature measurement is performed on selected locations in the utterance, based 
upon the broad-category boundaries. A total of 617 inputs are used by the classifier. 

Letter classification is performed by a network with 52 hidden units and 26 
output units, one per letter. 

2.2 NEURAL NETWORK PITCH TRACKER 

Pitch tracking is achieved through a network which classifies each peak in the wave
form as to whether it begins a pitch period [Barnard et ai., 1991]. The waveform 
is lowpass filtered at 700 Hz and each positive peak is classified using information 
about it and the preceding and following four peaks. For each of the nine peaks, 
the following information is provided. (1) the amplitude, (2) the time difference be
tween the peak and the candidate peak, (3) a measure of the similarity of the peak 
and the candidate peak (point-by-point correlation), (4) the width of the peak, and 
(5) the negative amplitude or most negative value preceding the peak. The network 
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was trained on the TIM IT database, and agrees with expert labelers about 98% of 
the time. It performs well on our data without retraining. 

2.3 NEURAL NETWORK LETTER CLASSIFIER 

Each letter (except W) has a single SON segment (e.g. the /iy/ in T, the whole 
letter M). This segment always exists, and provides the temporal anchor for most 
of the feature measurements. The previous consonant is the STOP or FRIC (e.g. B 
or C) before the SON. If there is no STOP or FRIC (e.g. E), the 200 msec interval 
before the SON is treated as a single segment for feature extraction. After dozens 
of experiments, we arrived at the following feature set: 

• DFT coefficients from the consonant preceding the SON. The consonant is di
vided into thirds temporally; from each third, 32 averaged values are extracted 
linearly from 0 to 8kHz. All DFT inputs are normalized locally so that the 
largest value from a given time slice becomes 1.0 and the smallest becomes 0.0. 
(96 values) 

• DFT coefficients from the SON. From each seventh of the SON, 32 averaged 
values are extracted linearly from 0 to 4kHz. (224 values) 

• DFT coefficients following the SON. At the point of maximum zero-crossing 
rate in the 200 msec after the SON, 32 values are extracted linearly from 0 to 
8kHz. (32 values) 

• DFT coefficients from the second and fifth frame of the SON-32 values from 
each frame extracted linearly from 0 to 4kHz. These are not averaged over 
time, and will reflect formant movement at the SON onset. (64 values) 

• DFT coefficients from the location in the center of the SON with the largest 
spectral difference-linear from 0 to 4kHz. This samples the formant locations 
at the vowel-nasal boundary in case the letter is M or N. (32 values) 

• Zero-crossing rate in 11 18-msec segments (198 msec) before the SON, in 11 
equal-length segments during the SON and in 11 18-msec segments after the 
SON. This provides an absolute time scale before and after the SON which 
could help overcome segmentation errors. (33 values) 

• Amplitude from before, during and after the SON represented the same way 
as zero-crossing. (33 values) 

• Filtered amplitude represented the same way as amplitude. (33 values) 

• Spectral difference represented like zero-crossing and amplitude except the 
maximum value for each segment is used instead of the average, to avoid 
smoothing the peaks which occur at boundaries. (33 values) 

• Inside the SON, the spectral center of mass from 0 to 1000 Hz, measured in 10 
equal segments. (10 values) 

• Inside the SON, the spectral center of mass from 1500 to 3500 Hz, measured 
in 10 equal segments. (10 values) 

• Median pitch, the median distance between pitch peaks in the center of the 
SON. (1 value) 

• Duration of the SON. (1 value) 
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• Duration of the consonant before the SON. (1 value) 

• High-resolution representation of the amplitude at the SON onset: five values 
from 12 msec before the onset to 30 msec after the onset. (5 values) 

• Abruptness of onset of the consonant before the SON, measured as the largest 
two-frame jump in amplitude in the 30 msec around the beginning of the con
sonant. (1 value) 

• The label of the segment before the SON: CLOS, FRIC or STOP. (3 values) 

• The largest spectral difference value from 100 msec before the SON onset to 21 
msec after, normalized to accentuate the difference between Band V. (1 value) 

• The number of consistent pitch peaks in the previous consonant. (1 value) 
• The number of consistent pitch peaks before the previous consonant. (1 value) 

• The presence of the segment sequence eLOS FRIC after the SON (an indicator 
of X or H). (1 binary value) 

All inputs to our network were normalized: mapped to the interval [0.0, 1.0]. We 
attempted to normalize so that the entire range was well utilized. In some instances, 
the normalization was keyed to particular distinctions. For example, the center of 
mass in the spectrum from 0 to 1000 Hz was normalized so that E was low and A 
was high. Other vowels, such as 0 would have values "off the scale" and would map 
to 1.0, but the feature was added specifically for Ej A distinctions. 

2.4 PERFORMANCE 

During feature development, two utterances of each letter from 60 speakers were 
used for training and 60 additional speakers served as the test set. For the final 
performance evaluation, these 120 speakers were combined to form a large training 
set. The final test set consists of 30 new speakers. The network correctly classified 
95.9% of the letters. 

The E-set {B,C,D,E,G,P,T,V,Z} and MN are the most difficult letters to classify. 
We trained separate network for just the M vs. N distinction and another for just 
the letters in the E-set [Fanty and Cole, 1990]. Using these networks as a second 
pass when the first network has a response in the E-set or in {M ,N}, the performance 
rose slightly to 96%. 

As mentioned above, all feature development was performed by training on half the 
training speakers and testing on the other half. The development set performance 
was 93.5% when using all the features. With only the 448 DFT values (not spectral 
difference or center of mass) the performance was 87%. Using all the features except 
DFT values (but including spectral difference and center of mass), the performance 
was 83%. 

3 NAME RETRIEVAL FROM SPELLINGS 

3.1 SYSTEM OVERVIEW 

Our isolated letter recognizer was expanded to recognize letters spoken with pauses 
by (1) Training a neural network to do broad-category segmentation of spelled 
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strings (described in section 3.2); (2) Retraining the letter recognizer using letters 
extracted from spelled strings; (3) Devising an algorithm to divide an utterance 
into individual letters based on the broad category segmentation; and (4) Efficiently 
searching a large list of names to find the best match. 

The letter classification network uses the same features as the isolated letter net
work. Feature measurements were based on segment boundaries provided by the 
neural network segmenter. The letter classification network was trained on isolated 
letters from 120 speakers plus letters from spelled strings from 60 additional speak
ers. The letter recognition performance on our cross-validation set of 8 speakers 
was 97%; on a preliminary test set of 10 additional speakers it was 95.5%. The 
letter recognition performance on our final test set was lower, as reported below. 

The rules for letter segmentation are simplified by the structure of the English al
phabet. All letters (except W-see below) have a single syllable, which corresponds 
to a single SON segment in the broad-category segmentation. In the usual case, 
letter boundaries are placed at the last CLOS or GLOT between SONs. A full 
description of the rules used can be found in [Cole et al., 1991] . 

The output of the classifier is a score between 0.0 and 1.0 for each letter. These 
scores are treated as probabilities and the most likely name is retrieved from the 
database. The names are stored in a tree structure. The number of nodes near the 
root of the tree is small, so the search is fast. As the search approaches the leaves, 
the number of nodes grows rapidly, but it is possible to prune low-scoring paths. 

3.2 NEURAL NETWORK BROAD-CATEGORY SEGMENTATION 

The rule-based segmenter developed for isolated letters was too finely tuned to work 
well on letter strings. Rather than re-tune the rules, we decided to train a network 
to do broad category segmentation. At the same time, we added the category 
GLOT for glottalization, a slowing down of the vocal cords which often occurs at 
vowel-vowel boundaries. 

The rule-based segmenter searched for boundaries. The neural network segmenter 
works in a different way [Gopalakrishnan, August 1990]. It classifies each 3 msec 
frame as being in a SON, CLOS, STOP, FRIC or GLOT. A five-point median 
smoothing is applied to the outputs, and the classification of the frame is taken to 
be the largest output. Some simple rules are applied to delete impossible segments 
such as 12 msec SONs. 

The features found to produce the best performance are: 

• 64 DFT coefficients linear from 0 to 8kHz at the frame to be classified. 

• Spectral difference of adjacent 24 msec segments. These values are given for 
every frame in the 30 msec surrounding the frame to be classified, and for every 
5 frames beyond that to 150 msecs before and after the frame to be classified. 
All subsequent features are sampled in the same manner. 

• Spectral difference from 0 to 700 Hz in adjacent 24 msec segments. 

• Amplitude of the waveform. 

• Amplitude of the waveform lowpass filtered at 700 Hz. The window used to 
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measure the amplitude is just larger than the median pitch. In normal voicing, 
there is always at least one pitch peak inside the window and the output is 
smooth. During glottalization, the pitch peaks are more widely spaced. For 
some frames, the window used to measure amplitude contains no pitch peaks 
and the amplitude is sharply lower. Uneveness in this measure is thus an 
indication of glottalization. 

• Zero crossing rate. 

• A binary indicator of consistent pitch. 

• The center of mass in the DFT coefficients between 0 and 1000 Hz. 

A train-on-errors procedure was found to be very helpful. The segmenter resulting 
from training on the initial data set was used to classify new data. Frames for which 
it disagreed with hand-labeling were added to the initial data set and the network 
was retrained. This process was repeated several times. 

3.3 SYSTEM PERFORMANCE 

The system was evaluated on 1020 names provided by 34 speakers who were not 
used to train the system. Each subject spelled 30 names drawn randomly from the 
database of 50,000 surnames. The speaker was instructed to pause briefly between 
letters, but was not given any feedback during the session. 

The list of 50,000 names provides a grammar of possible strings with perplexity 
4. Using this grammar, the correct name was found 95.3% of the time. Of the 48 
names not correctly retrieved, all but 6 of these were in the top 3 choices, and all 
but 2 were in the top 10. The letter recognition accuracy was 98.8% (total words 
minus substitutions plus deletions plus insertions, using a dynamic programming 
match). Examination of these name-retrieval errors revealed that about 50% were 
caused by misclassification of a letter, and about 50% were caused by bad letter 
segmentation. (Sixty percent of the segmentation errors were caused by GLOT 
insertions; forty percent were due to the speaker failing to pause.) 

Without a grammar, the correct name is found only 53.9% of the time; almost 
half the inputs had at least one segmentation or classification error. The letter 
recognition accuracy was 89.1% using a dynamic programming match. Ignoring 
segmentation errors, 93% of the letters were correctly classified. 

4 PHONEME RECOGNITION IN CONNECTED 
LETTERS 

We have begun work on a continuous letter recognizer, which does not require pauses 
between the letters. The current system has two parts: a phonetic classifier which 
categorizes each frame as one of 30 phonemes (those phonemes found in letters plus 
glottalization)[Janssen et al., 1989], and a Viterbi search to find the sequence of 
letters which best matches the frame-by-frame phoneme scores. 

The phonetic classifier is given 160 DFT coefficients; 40 for the frame to be classified, 
for the immediate context (+ / - 12 msec), for the near context (+ / - 45 msec) and for 
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the far context (+/- 78 msec) In addition, 87 features are added for the waveform 
amplitude, zero-crossing rate and spectral difference measure in a 183 msec window 
centered on the frame to be classified. It was trained on 9833 frames from 130 
speakers spelling naturally. It was tested on 72 new speakers and achieved 76% 
frame accuracy with the instances of each phoneme categories equally balanced. 
When we feed the outputs of this network into a second network in addition to the 
DFT and other features, performance rose to 81 %. 

Simple letter models are used in a Viterbi search and enforce order and duration 
constraints for the phonemes. More work is required on coarticulation modeling, 
among other things. We are especially anxious to use carefully chosen features as 
with our isolated letter recognizer. 
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