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Abstract 

The Hopfield network (Hopfield, 1982,1984) provides a simple model of an 
associative memory in a neuronal structure. This model, however, is based 
on highly artificial assumptions, especially the use of formal-two state neu­
rons (Hopfield, 1982) or graded-response neurons (Hopfield, 1984). \Vhat 
happens if we replace the formal neurons by 'real' biological neurons? \Ve 
address this question in two steps. First, we show that a simple model of 
a neuron can capture all relevant features of neuron spiking, i. e., a wide 
range of spiking frequencies and a realistic distribution of interspike inter­
vals. Second, we construct an associative memory by linking these neurons 
together. The analytical solution for a large and fully connected network 
shows that the Hopfield solution is valid only for neurons with a short re­
fractory period. If the refractory period is longer than a crit.ical duration 
ie, the solutions are qualitatively different. The associative character of 
the solutions, however, is preserved. 

1 INTRODUCTION 

Information received at the sensory level is encoded in spike trains which are then 
transmitted to different parts of the brain where the main processing steps occur. 
Since all the spikes of any particular neuron look alike, the information of the spike 
train is obviously not contained in the exact shape of the spikes, but rather in 
their arrival times and in the correlations between the spikes. A model neuron 
which tries to keep track of the voltage trace even during the spiking-like the 
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Hodgkin Huxley equations (Hodgkin, 1952) and similar models-carries therefore 
non-essential details, if we are only interested in the information of the spike train. 
On the other hand, a simple two-state neuron or threshold model is too simplistic 
since it cannot reproduce the variety of spiking behaviour found in real neurons. The 
same is true for continuous or analog model neurons which disregard the stochastic 
nature of neuron firing completely. In this work we construct a model of the neuron 
which is intermediate between these extremes. Vve are not concerned with the shape 
of the spikes and detailed voltage traces, but we want realistic interval distributions 
and rate functions. Finally, we link these neurons together to capture collective 
effects and we construct a network that can function as an associative memory. 

2 THE MODEL NEURON 

From a neural-network point of view it is often convenient to consider a neuron 
as a simple computational unit with no internal parameters. In this case, the 
neuron is described either as a 'digital' theshold unit or as a nonlinear 'analog' 
element with a sigmoid input-output relation. \Vhile such a simple model might be 
useful for formal considerations in abstract networks, it is hard to see how it could 
be modified to include realistic features of neurons: How can we account for the 
statistical properties of the spike train beyond the mean firing frequencies? What 
about bursting or oscillating neurons? - to mention but a few of the problems with 
real neurons. 

\Ve would like to use a model neuron which is closer to biology in the sense that it 
produces spike trains comparable of those in real neurons. Our description of the 
spiking dynamics therefore emphasizes three basic notions of neurobiology: thresh­
old, refractory period, and noise. In particular we describe the internal state of the 
neuron by the membrane voltage h which depends on the synaptic contributions 
from other neurons as well as on the spiking history of the neuron itself. In a simple 
threshold crossing process, a spike would be initiated as soon as the voltage h(t) 
crosses the threshold (). Due to the statistical fluctuations of the momentary voltage 
around h(t), however, the spiking will be a statistical event, the spikes coming a 
bit too early or a bit too late compared to the formal threshold crossing time, de­
pending on the direction of the fluctuations . This fact will be taken into account by 
introducing a probabilistic spiking rate r, which depends on the difference between 
the membrane voltage h and the threshold () in an exponential fashion: 

1 
r = - exp[,B(h - (})], 

7'0 
(1) 

where the formal temperature (3-1 is a measure for the noise and 7'0 is an internal 
time constant of the neuron . If h changes only slowly during a conveniently cho­
sen time 7'1, we can integrate over 7'1, which yields the probability PF(h) of firing 
during a time step of length 7'1. This gives us an analytic procedure to switch from 
continuous time to the discrete time step representation used later on. 

If a spike is initiated in a real neuron, the neuron goes through a cycle of ion influx 
and efflux which changes the potential on a fast time scale and prevents immediate 
firing of another spike. To model this we reset the potential after each spike by 
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adding a negative refractory field hr(t) to the potential: 

with 
h(t) = h·(t) + hr(t), 

hr(t) = Lcr(t -ti), 
i 

(2) 

(3) 

where ti is the time of the ith spike and h'(t) is the postsynaptic potential due 
to incoming spikes from other neurons. The form of the refractory function Cr(T) 
together with the noise level {3 determine the firing characteristics of the neuron. 
\Vith fairly simple refractory fields we can achieve a sigmoid dependence of the 
firing frequency upon the input current (figure 1) and realistic spiking statistics 
(figure 3). 
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Figure 1: f-I-plot (frequency versus input current) for a standard neuron with 
absolute and relative refractory period. The absolute refractory period lasts for 
a = 5ms followed by an exponentially decaying relative refractory function (time 
constant 2ms). The refractory function is shown in figure 2. 
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Figure 2: Refractory function of the model used in figure 1. 

Indeed, the interval distribution changes from an approximate Poisson distribution 
for driving currents below threshold to an approximate Gaussian distribution above 
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threshold. Different forms of the refractory function can lead to bursting behavior 
or to model neurons with adaptive behavior. 

In figure 4 we show a bursting neuron defined by a long-tailed refractory function 
with a slight overshooting at intermediate time delays. At low input level, the bursts 
are noise induced and appear in irregular intervals. For larger driving currents the 
spiking changes to regular bursting. Even a model with a simple absolute refractory 
period 

(4) 

has many interesting features. The explicit solution for a network of these neurons 
is given in the following sections. 
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Figure 3: Spike trains and Interval distributions for the model of figure I at two 
different input levels. 
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3 THE NETWORK 

So far we have only described the dynamics which initiates the spikes in the neurons. 
Now we have to describe the spikes themselves and their synaptic transmission to 
other neurons. To keep track of the spikes we assign to each neuron a two state 
variable Sj which usually rests at -1 and flips to +1 only when a spike is initiated. 
In the discrete time step representation that we assume in the following the output 
of each neuron is then described by a sequence of Ising spins Sj{tn ). 
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Figure 4: Spike trains for a bursting neuron. At low input level the bursts are noise 
induced and appear in irregular intervals, at high input level the bursting is regular. 

In a network of neurons, neuron i may recieve a spike from neuron j via the synaptic 
connection, and the spike will evoke a postsynaptic potential at i. The strength of 
this response will depend on the synaptic efficacy Jii' The time course of this 
response, however, can be taken to have a generic form independent of the strength 
of the synapse. We formalize these ideas assuming linearity and write 

hi(tn) = L hi L c{Tm)Si(tn - Tm), (5) 
i 'T", 

where c( T) might be an experimental response function and Sj is a conveniently 
normalized variable proportional to Sj. 

For the synaptic efficacies we assume the Hebbian matrix also taken by Hopfield 
1 p 

J .. - ~ elJelJ 
I) - N L...J'i 'i ' 

1J=1 

(6) 
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where the varables ~r = ±1, (1 < i < N, 1 ~ J..l < p) describe the p random 
patterns to be stored. We can obtain these synaptic weights by a Hebbian learning 
procedure. It is now straightforward to incorporate the internal dynamics of the 
neurons, which we described in the preceding section. The refractory field can be 
introduced as the diagonal elements of the synaptic connection matrix 

(7) 

If all the neurons are equivalent, the diagonal elements must be independent of i 
and Jii(T) = (r(T) describes the generic voltage response of our model neuron after 
firing of a spike. 

4 RESULTS 

\Ve can solve this model analytically in the limit of a large and fully connected 
network. The solution depends on an additional parameter p which characterizes 
the maximum spiking frequency of the neurons. To compare our results with the 
Hopfield model, we replace PF(h), calculated from (1), by the generic form ~(1 + 
tanh(J3h» and we take the case of the simple refractory field (4). In this case the 
parameter p is related to the absolute refractory period by p = 'l'!l. For a large 
maximum spiking frequency or 'Y -+ 0, we recover the Hopfield solutions. For I 
larger than a critical value ,e the solutions are qualitatively different: there is a 
regime of inverse temperatures in which both the retrieval solution and the trivial 
solution are stable. This allows the network to remain undecided, if the initial 
overlap with one of the patterns is not large enough. This is in contrast to the 
Hopfield model (Hopfield 1982,1984) where the network is always forced into one of 
the retrieval states. 'Ve compared our analytic solutions with computersimulations 
which verified that the calculated stationary solutions are indeed stable states of 
the network with a wide basin of attraction. Thus the basic associative memory 
characteristics of the standard Hopfield model are robust under the replacement of 
the two state neurons by more biological neurons. 

5 CONCLUSIONS 

\\Te constructed a network of neurons with intrinsic spiking behaviour and realistic 
postsynaptic response. In addition to the standard solutions we have undecided 
network states which might have a biological significance in the process of decision 
making. There remain of course a number of unbiological features in the network, 
e.g. the assumption of full connectivity, the symmetry of the connections and the 
linearity of the learning rule. But most of these assumptions can be overcome at 
least in principle (see e.g. Amit 1989 for references). Our results confirm the general 
robustness of attractor neural networks to biological modifications, but they suggest 
that including more biological details also adds interesting features to the variety 
of states available to the network. 
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Figure 5: Stationary states of the network . Depending on the length of the refrac­
tory period the retrieval behavior varies. Figures a and b show the overlap with 
one of the learned patterns for different noise level T = 1/ {3. For a neuron a with 
short refractory period (figure a) the overlap curve is similar to those of the Hopfield 
model. For longer refractory periods (figure b) the curve is qualitatively different, 
showing a regime of bistability at intermediate noise levels. If the network is work­
ing at these noise levels it depends on the initial overlap with the learned pattern 
whether the network will go to the trivial state with overlap 0 or t.o the retrieval 
state with large overlap (overlap m = 1 corresponds to perfect retrieval.). 

Acknowledgements 

I would like to thank \\TilIiam Bialek and his students at Berkeley for their generous 
hospitality and numerous stimulating discussions. Thanks also to J .L.\'anHemmen 
and to Andreas Herz for many helpful comments and advice. I acknowledge the 
financial support of the German Academic Exchange Service (DAAD) who made 
my stay at Berkeley possible. 

References 

Hopfield,J.J. (1982), Neural Networks and Physical Systems with Emergent ColIec­
tive Computational Abilities, Proc.Natl.Acad.Sci USA 79,2554-2558. 

Hopfield,J.J. (1984), Neurons with Graded Response have Collective Computational 
Properties like those of Two-State-Neurons, Proc.Natl.Acad.Sci USA 81, 3088-3092. 

Hodgkin,A.L. and Huxley,A.F. (1952) A Quantitative Description of Membrane 
Current and its Application to Conduction and Excitation in Nerve, J .Physiology 
117,500-544. 

Amit,D.J., (1989) Modeling Brain Function: The \\Torld of Attractor Neural Net­
works, CH.7. Cambridge University Press. 


