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Abstract 

In this paper, we will describe several extensions to our earlier work, utiliz­
ing a segment-based approach. We will formulate our segmental framework 
and report our study on the use of multi-layer perceptrons for detection 
and classification of phonemes. We will also examine the outputs of the 
network, and compare the network performance with other classifiers. Our 
investigation is performed within a set of experiments that attempts to 
recognize 38 vowels and consonants in American English independent of 
speaker. When evaluated on the TIMIT database, our system achieves an 
accuracy of 56%. 

1 Introduction 

Thus far, the neural networks research community has placed heavy emphasis on 
the problem of pattern classification. In many applications, including speech recog­
nition, one must also address the issue of detection. Thus, for example, one must 
detect the presence of phonetic segments as well as classify them. Recently, the 
community has moved more towards recognition of continuous speech. A network 
is typically used to label every frame of speech in a frame-based recognition sys­
tem [Franzini 90, Morgan 90, Tebelskis 90]. 

Our goal is to study and exploit the capability of ANN for speech recognition, 
based on the premise that ANN may offer a flexible framework for us to utilize our 
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improved, albeit incomplete, speech knowledge. As an intermediate milestone, this 
paper extends our earlier work on phonetic classification to context-independent 
phonetic recognition. Thus we need to locate as well as identify the phonetic units. 
Our system differs from the majority of approaches in that a; segmental framework is 
adopted. The network is used in conjunction with acoustic segmentation procedures 
to provide a phonetic string for the entire utterance. 

2 Segmental Formulation 

In our segmental framework, a phonetic unit is mapped to a segment explicitly 
delineated by a begin and end time in the speech signal. This is motivated by the 
belief that a segmental framework offers us more flexibility in applying our speech 
knowledge than is afforded by a frame-based approach. As a result, a segment-based 
approach could ultimately lead to superior modelling of the temporal variations in 
the realization of underlying phonological units. 

Let & denote the best sequence of phonetic units in an utterance. To simplify the 
problem, we assume that P(SI) = p(sllQ'j), where SI stand for the ith time segment 
that has one and only one phoneme in it, and Q' j stands for the best phoneme label 
in SI. Thus the probability of the best sequence, p( &), is: 

1 <j< N (1) 

where sis any possible sequence of time segments consisting of {S1' S2, ... }, P(SI) is 
the probability of a valid time segment, and N is the number of possible phonetic 
units. In order to perform recognition, the two probabilities in Equation 1 must be 
estimated. The first term, p(Q'j), is a set of phoneme probabilities and thus can be 
viewed as a classification problem. The second term, P(SI), is a set of probabilities 
of valid time regions and thus can be estimated as a segmentation problem. 

2.1 Segmentation 

In order to estimate the segment probabilities, P(SI), in Equation 1, we have formu­
lated segmentation into a boundary classification problem. Let bl and br be the left 
and right boundary of a time segment, SI, respectively, as shown in Figure 1a. Let 
{b1 , b2 , •• , bK } be the set of boundaries that might exist within SI. These boundaries 
can be proposed by a boundary detector, or they can simply occur at every frame of 
speech. We define p( SI) to be the joint probability that the left and right boundaries 
exist and all other boundaries within SI do not exist. To reduce the complexity of 
the problem, assume b j is statistically independent of bk for \;f j # k. Thus, 

p(Si) = p(bl , b1 , b2 , •• , bK , br ) 

= p(bdp(b1 )p(b2 ) ••. p(bK )p(br ), 
(2) 
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Figure 1: Schematic diagrams for estimation of (a) segment probability, P(Si), and 
(b) boundary probability, p(bk ). The boundaries can be proposed by a boundary 
detector, or they can simply occur at every frame. See text. 

where p(b,) and p(br2 stand for the probability that the left and right boundary 
exist, respectively, P(bk) stands for the probability that the kth boundary does not 
exist. As a result, the probability of a segment, p(sd can be obtained by computing 
the probabilities of the boundaries, P(bk), subsumed by the segment. As we will 
discuss in a later section, by using the time-aligned transcription, we can train the 
boundary probabilities in a supervised manner. 

2.2 Phonetic Classification 

Once the probability of a segment, P(SI), is obtained, we still need to classify it, 
i.e. compute the probabilities of the phonetic units in the segment, p(aj). Again, 
the time-aligned transcription can be used to train the probabilities in a supervised 
manner. We have discussed this in earlier papers [Leung 89, Leung 90]. In a later 
section, we will discuss some of our recent experimental results. 

3 Experiments 

3.1 Tasks and Corpora 

The experiments described in this paper deal with classification and recognition of 
38 phonetic labels representing 14 vowels, 3 semivowels, 3 nasals, 8 fricatives, 2 
affricates, 6 stops, 1 flap and 1 silence. Within the context of classification, the 
networks are given a segment of the speech signal, and are asked to determine 
its phonetic identity. Within the context of recognition, the networks are given 
an utterance, and are asked to determine the identity and locations of the pho­
netic units in the utterance. All experiments were based on the sentences in the 
TIMIT database [Lamel 86]. As summarized in Table 1, Corpus I contains 1,750 sx 
sentences spoken by 350 male and female speakers, resulting in a total of 64,000 
phonetic tokens. Corpus II contains 4,400 sx and si sentences spoken by 550 male 
and female speakers, resulting in a total of 165,000 phonetic tokens . 

3.2 Phonetic Classification 

As previously discussed, estimation of the probability, p(aj) in Equation 1 can be 
viewed as a classification problem. Many statistical classifiers can be used. We have 
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Corpus Set Speakers Sentences Tokens Type 
I trainmg 300 1500 55,000 sx 

testing 50 250 9,000 sx 
II traIning 500 4000 150,000 sxfsi 

testing 50 400 15,000 sx/si 

Table 1: Corpora I and II extracted from the TIMIT database. Corpus I contains 
only sx sentences, whereas Corpus II contains both sx and si sentences. The speakers 
in the testing sets for both Corpus I and Corpus II are the same. 

chosen to use the MLP, due to its discriminatory capability, as well as its flexibility 
in that it does not make assumptions about specific statistical distributions or 
distance metrics. In addition, earlier work shows that the outputs of MLP can 
approximate posteriori probabilities [Bourlard 88]. To train the network, we adopt 
procedures such as center initialization, input normalization, adaptive gain, and 
modular training [Leung 90]. The input representation was identical to that in the 
SUMMIT system, and consisted of 82 acoustic attributes [Zue 89]. These segmental 
attributes were generated automatically by a search procedure that uses the training 
data to determine the settings of the free parameters of a set of generic property 
detectors using an optimization procedure [Phillips 88]. 

3.3 Boundary Classification 

In our segmental framework formulated in Equation 1, the main difference between 
classification and recognition is the incorporation of a probability for each segment, 
P(Si). As described previously in Equation 2, we have simplified the problem of 
estimating P(SI) to one of determining the probability that a boundary exists, p(bt). 

To estimate P(bk), a MLP with two output units is used, one for the valid bound­
aries and the other for the extraneous boundaries. By referencing the time-aligned 
phonetic transcription, the desired outputs of the network can be determined. In 
our current implementation p(bt) is determined using four abutting segments, as 
shown in Figure lb. These segments are proposed by the boundary detector in 
the SUMMIT system. Let tl stand for the time at which bl is located, and SI stand 
for the segment between tl and tl+1, where tl+1 > tl. The boundary probability, 
p( bl ), is then determined by using the average mean-rate response [Seneff 88] in 
SI-2, SI-1, 81, and SI+1 as inputs to the MLP. Thus the network has altogether 160 
input units. 

3.4 Results 

3.4.1 Phonetic Classification 

In the phonetic classification experiments, the system classified a token extracted 
from a phonetic transcription that had been aligned with the speech waveform. 
Since there was no detection involved in these experiments only substitution errors 
were possible. 
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Classifier Correct Parameters 
I SUMMIT 70% 2,200 
I Gaussian 70% 128,000 
I MLP 74% 15,000 
II MLP 76% 30,000 

Table 2: Phonetic classification results using the SUMMIT classifier, Gaussian clas­
sifier, and MLP. Also shown are the number of parameters in the classifiers. 

In the first set of experiments, we compared results based on Corpus I, using dif­
ferent classifiers. As Table 2 shows, the baseline speaker-independent classification 
performance of SUMMIT on the testing data was 70%. When Gaussian classifiers 
with full covariance matrices were used, we found that the performance is also about 
70%. Finally, when the MLP is used, a performance of 74% is achieved. 

Although the sx sentences were designed to be phonetically balanced, the 1,750 
sentences in Corpus I are not distinct. In the second set of experiments, we evaluated 
the MLP classifier on Corpus II, which include both the sx and si sentences. 1 As 
shown in Table 2, the classifier achieves 76%. 

Parameters: The networks used as described in Table 2 have only 1 hidden layer. 
The number of hidden units in the network can be 128 or 256, resulting in 15,000 
or 30,000 connections. For comparison, Table 2 also shows the number of parame­
ters for the SUMMIT and Gaussian classifiers. While the SUMMIT classifier requires 
only about 2,200 parameters, the Gaussian classifiers require as much as 128,000 
parameters, an order of magnitude more than the MLP. These numbers also give us 
some idea about the computational requirements for different classifiers, since the 
required number of multiplications is about the same as the number of parameters. 

Network Outputs: We have chosen the network to estimate the phoneme proba­
bilities. When the network is trained, the target values are either lor O. However, if 
the network is over-trained, its output values may approach either 1 or 0, resulting 
in poor estimates of the posterior probabilities. Figure 2 shows two distributions 
for the output values of the network for 3600 tokens from the test set. Figure 2a 
corresponds to the ratio of the highest output value to the sum of the network out­
put values, whereas Figure 2b corresponds to the second highest output value. We 
can see that both distributions are quite broad, suggesting that the network often 
makes "soft" decisions about the phoneme labels. We feel that this is important 
since in speech recognition, we often need to combine scores or probabilities from 
different parts of the system. 

3.4.2 Boundary Classification 

We have evaluated the boundary classifier using the training and testing data in 
Corpus I. By using 32 hidden units, the network can classify 87% of the boundaries 
in the test set correctly. 

1 All the si sentences in TIMIT are distinct. 
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Figure 2: Histograms for the output values of the network extracted from 3600 
samples: (a) the highest output values, and (b) the second highest output values. 

Corpus Classifer Segment Accuracy 

I Baseline Binary Hierarchy 47% 
I MLP Binary Hierarchy 50% 
I MLP Stochastic Pruning 54% 
II MLP Stochastic Pruning 56% 

Table 3: Phonetic recognition results using binary hierarchy (dendrogram), and 
boundary pruning. No duration, bigram, or trigram statistics have been used. 
Errors include substitutions, deletions, and insertions. 

3.4.3 Phonetic Recognition 

One of the disadvantages of our segmental framework is that the amount of com­
putation involved can be very significant, since a segment can begin and end at any 
frame of an utterance. We have explored various pruning strategies. In this paper, 
we will report our results using stochastic pruning and binary hierarchy [Leung gOa]. 
We have found that such pruning strategies can reduce the amount of computation 
by about 3 orders of magnitude. 

The results of the phonetic recognition experiments are shown in Table 3. No 
duration, bigram, or trigram statistics have been used. The baseline performance 
of the current SUMMIT system on Corpus I is 47%, including substitution, deletion, 
and insertion errors. When the MLP was used in place of the classifier in the current 
SUMMIT system using also the binary hierarchical representation, the performance 
improved to 50%. When the MLP was used with stochastic pruning technique, the 
performance improved to 54%. Finally, by using the network trained and tested on 
Corpus II, the performance improved to 56%. 
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4 Discussion 

In summary, we have discussed a segmental approach for phonetic recognition. 
We have also examined the outputs of the network, and compared performance 
results and computational requirements with different classifiers. We have shown 
that decisions made by the network are quite "soft", and that the network yields 
results favorable to other more traditional classifiers. Future work includes the use 
of context-dependent models for phonetic and boundary classification, utilization 
of other phonological units, and extension to recognition of continuous speech. 
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