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Abstract 

We describe a CMOS neural net chip with a reconfigurable network archi
tecture. It contains 32,768 binary, programmable connections arranged in 
256 'building block' neurons. Several 'building blocks' can be connected to 
form long neurons with up to 1024 binary connections or to form neurons 
with analog connections. Single- or multi-layer networks can be imple
mented with this chip. We have integrated this chip into a board system 
together with a digital signal processor and fast memory. This system is 
currently in use for image processing applications in which the chip extracts 
features such as edges and corners from binary and gray-level images. 

1 INTRODUCTION 

A key problem for a hardware implementation of neural nets is to find the proper 
network architecture. With a fixed network structure only few problems can be 
solved efficiently. Therefore, we opted for a programmable architecture that can be 
changed under software control. A large, fully interconnected network can, in prin
ciple, implement any architecture, but this usually wastes a lot of the connections 
since many have to be set to zero. To make better use of the silicon, other designs 
implemented a programmable architecture - either by connecting several chips with 
switching blocks (Mueller89), or by placing switches between blocks of synapses on 
one chip (Satyanarayana90). The present design (GramO) consists of building blocks 
that can be connected to form many different network configurations. Single-layer 
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nets or multi-layer nets can be implemented. The connections can be binary or can 
have an analog depth of up to four bits. 

We designed this neural net chip mainly for pattern recognition applications, which 
tYp"ically require nets far too large for a single chip. However, the nets can often be 
structured so that the neurons have local receptive fields, and many neurons share 
the same receptive field. Such nets can be split into smaller parts that fit onto a 
chip, and the small nets are then scanned sequentially over an image. The circuit 
has been optimized for this type of network by adding shift registers for the data 
transport. 

The neural net chip implementation uses a mixture of analog and digital electronics. 
The weights, the neuron states and all the control signals are digital, while summing 
the contributions of all the weights is performed in analog form. All the data going 
on and off the chip are digital, which makes the integration of the network into a 
digital system straight-forward. 

2 THE CIRCUIT ARCHITECTURE 

2.1 The Building Block 

INPUT DATA REGISTER 128 BITS 

CONNECT OTHER 

128 CONNECTIONS 

SUMMING WIRE 

Figure I: One of the building blocks, a "neuron" 

Figure 1 shows schematically one of the building blocks. It consists of an array of 
128 connections which receive input signals from other neurons or from external 
sources. The weights as well as the inputs have binary values, +1 or -1. The output 
of a connection is a current representing the result of the multiplication of a weight 
with a state, and on a wire the currents from all the connections are summed. This 
sum is multiplied with a programmable factor and can be added to the currents 
of other neurons. The result is compared with a reference and is thresholded in a 
comparator. A total of 256 such building blocks are contained on the chip. 

Up to 8 of the building blocks can be connected to form a single neuron with up to 
1024 connections. The network is not restricted to binary connections. Connections 
with four bits of analog depth are obtained by joining four building blocks and by 
setting each of the multipliers to a different value: 1, 1/2, 1/4, 1/8 (see Figure 
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INPUT DATA REGISTER 128 BITS 

128 CONNECOONS 

128 CONNECTIONS 

Figure 2: Connecting four building blocks to form connections with four bits of 
resolution 

Figure 3: Photo micrograph of the neural net chip 
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2). In this case four binary connections, one in each building block, form one 
connection with an analog depth of four bits. Alternatively, the network can be 
configured for two-bit input signals and two-bit weights or four-bit inputs and one
bit weights. The multiplications of the input signals with the weights are four
quadrant multiplications, whether binary signals are used or multi-bit signals. With 
this approach only one scaling multiplier is needed per neuron, instead of one per 
connection as would be the case if connections were implemented with multiplying 
Dj A converters. 

The transfer function of a neuron is provided by the comparator. With a single com
parator the transfer function has a hard threshold. Other types of transfer functions 
can be obtained when several building blocks are connected. Then, several com
parators receive the same analog input and for each comparator a different reference 
can be selected (compare figure 2). In this way, for example, eight comparators may 
work as a three-bit AjD converter. Other transfer functions, such as sigmoids, can 
be approximated by selecting appropriate thresholds for the comparators. 

The neurons are arranged in groups of 16. For each group there is one register of 
128 bits providing the input data. The whole network contains 16 such groups, split 
in two halfs, each with eight groups. These groups of neurons can be recognized in 
Figure 3 that shows a photomicrograph of the circuit. The chip contains 412,000 
transistors and measures 4.5mm x 7mm. It is fabricated in 0.9J.lm CMOS technology 
with one level of poly and two levels of metal. 

2.2 Moving Data Through The Circuit 

From a user's point of view the chip consists of the four different types of registers 
listed in table 1. Programming of the chip consists in moving the data over a 
high-speed bus of 128 bits width between these registers. Results produced by the 
network can be loaded directly into data-input registers and can be used for a next 
computation. In this way some multi-layer networks can be implemented without 
loading data off chip between layers. 

Table 1: Registers in the neural net chip 

REGISTER FUNCTION 

Shift register 
Data-input registers 
Configuration registers 
Result registers 

Input and output of the data 
Provide input to the connections 
Determine the connectivity of the network 
Contain the output of the network 

In a typical operation 16 bits are loaded from the outside into a shift register. From 
that register the main bus distributes the data through the whole circuit. They are 
loaded into one or several of the data-input registers. The analog computation is 
then started and the results are latched into the result registers. These results are 
loaded either into data-input registers if a network with feedback or a multi-layer 
network is implemented, or they are loaded into the output shift register and off 
chip. 
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In addition to the main bus, the chip contains two 128 bit wide shift registers, one 
through each half of the connection matrix. All the shift registers were added to 
speed up the operation when networks with local fields of view are scanned over a 
signal. In such an application shift registers drastically reduce the amount of new 
data that have to be loaded into the chip from one run to the next. For example, 
when an input field of 16 x 16 pixels is scanned over an image, only 16 new data 
values have to be loaded for each run instead of 256. Loading the data on and off 
the chip is often the speed-limiting operation. Therefore, it is important to provide 
some support in hardware. 

3 TEST RESULTS 

The speed of the circuit is limited by the time it takes the analog computation 
to settle to its final value. This operation requires less than 50 ns. The chip can 
be operated with instruction cycles of lOOns, where in the first 50 ns the analog 
computation settles down and during the following 50 ns the results are read out. 
Simultaneously with reading out the results, new data are loaded into the data
input registers. In this way 32k one-bit multiply-accumulates are executed every 
lOOns, which amounts to 320 billion connections/second. 

The accuracy of the analog computation is about ±5%. This means, for example, 
that a comparator whose threshold is set to a value of 100 connections may already 
turn on when it receives the current from 95 connections. This limited accuracy is 
due to mismatches of the devices used for the analog computation. However, the 
threshold for each comparator may be individually adjusted at the cost of dedicating 
neurons to the task. Then a threshold can be adjusted to ±1 %. The operation of 
the digital part of the network and the analog part has been synchronized in such a 
way that the noise generated by the digital part has a minimal effect on the analog 
computation. 

4 THE BOARD SYSTEM 

A system was developed to use the neural net chip as a coprocessor of a workstation 
with a VME bus. A schematic of this system is shown in figure 4. Beside the neural 
net chip, the board contains a digital signal processor to control the whole system 
and 256k of fast memory. Pictures are loaded from the host into the board's memory 
and are then scanned with the neural net chip. The results are loaded back into 
the board memory and from there to the host. 

Loading pictures over the VME bus limits the overall speed of this system to about 
one frame of 512 x 512 pixels per second. Although this corresponds to less than 
10% of the chips maximum data throughput, operations such as scanning an image 
with 32 16 x 16 kernels can be done in one second. The same operation would take 
around 30 minutes on the workstation alone. Therefore, this system represents a 
very useful tool for image processing, in particular for developing algorithms. Its 
architecture makes it very flexible since part of a problem can be solved by the 
digital signal processor and the computationally intensive parts on the neural net 
chip. An extra data path for the signals will be added later to take full advantage 
of the neural net's speed. 
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Figure 4: Schematic of the board system for the neural net chip 

Figure 5: Result of a feature extraction application. Left image: Edges extracted 
from the milling cutter. Right image: The crosses mark where corners were detected. 
A total of 16 features were extracted simultaneously with detectors of 16 x 16 pixels 
In sIze. 
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5 APPLICATIONS 

Figure 5 shows the result of an application, where the net is used for extracting 
simultaneously edges and corners from a gray-level image. The network actually 
handles only a small resolution in the pixel values. Therefore, the picture is first 
half-toned with a standard error-diffusion algorithm and then, the half toned image 
is scanned with the network. To extract these features, kernels with three levels in 
the weights are loaded into the network. One neuron with 256 two-bit connections 
represents one kernel. There are a total of 16 such kernels in the network, each one 
tuned to a corner or an edge of a different orientation. For each comparator an 
extra neuron is used to set the threshold. This whole task fills 50% of the chip. 

Edges and corners are important features that are often used to identify objects 
or to determine their positions and orientations. We are applying them now to 
segment complex images. Convolutional algorithms have long been recognized as 
reliable methods for extracting features. However, they are computationally very 
expensive so that often special-purpose hardware is required. To our knowledge, no 
other circuit can extract such a large number of features at a comparable rate. 

This application demonstrates, how a large number of connections can compensate 
for a limited resolution in the weights and the states. We took a gray level image 
and clipped its pixels to binary values. Despite this coarse quantization of the 
signal the relevant information can be extracted reliably. Since many connections 
are contributing to each result, uncorrelated errors due to quantization are averaged 
out. The key to a good result is to make sure that the quantization errors are indeed 
uncorrelated, at least approximately. 

This circuit has been designed with pattern matching applications in mind. How
ever, its flexibility makes it suitable for a much wider range of applications. In 
particular, since its connections as well as its architecture can be changed fast, in 
the order of lOOns, it can be integrated in an adaptive or a learning system. 
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