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Abstract

A novel unsupervised neural network for dimensionality reduction which
seeks directions emphasizing multimodality is presented, and its connec-
tion to exploratory projection pursuit methods is discussed. This leads to
a new statistical insight to the synaptic modification equations governing
learning in Bienenstock, Cooper, and Munro (BCM) neurons (1982).

The importance of a dimensionality reduction principle based solely on
distinguishing features, is demonstrated using a linguistically motivated
phoneme recognition experiment, and compared with feature extraction
using back-propagation network.

1 Introduction

Due to the curse of dimensionality (Bellman, 1961) it is desirable to extract fea-
tures from a high dimensional data space before attempting a classification. How to
perform this feature extraction/dimensionality reduction is not that clear. A first
simplification is to consider only features defined by linear (or semi-linear) projec-
tions of high dimensional data. This class of features is used in projection pursuit
methods (see review in Huber, 1985).

Even after this simplification, it is still difficult to characterize what interesting
projections are, although it is easy to point at projections that are uninteresting.
A statement that has recently been made precise by Diaconis and Freedman (1984)
says that for most high-dimensional clouds, most low-dimensional projections are
approximately normal. This finding suggests that the important information in the
data is conveyed in those directions whose single dimensional projected distribution
is far from Gaussian, especially at the center of the distribution. Friedman (1987)
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argues that the most computationally attractive measures for deviation from nor-
mality (projection indices) are based on polynomial moments. However they very
heavily emphasize departure from normality in the tails of the distribution (Huber,
1985). Second order polynomials (measuring the variance - principal components)
are not sufficient in characterizing the important features of a distribution (see
example in Duda & Hart (1973) p. 212), therefore higher order polynomials are
needed. We shall be using the observation that high dimensional clusters trans-
late to multimodal low dimensional projections, and if we are after such structures
measuring multimodality defines an interesting projection. In some special cases,
where the data is known in advance to be bi-modal, it is relatively straightforward
to define a good projection index (Hinton & Nowlan, 1990). When the structure
is not known in advance, defining a general multimodal measure of the projected
data is not straight forward, and will be discussed in this paper.

There are cases in which it is desirable to make the projection index invariant
under certain transformations, and maybe even remove second order structure (see
Huber, 1985) for desirable invariant properties of projection indices). In such cases
it is possible to make such transformations before hand (Friedman, 1987), and then
assume that the data possesses these invariant properties already.

2 Feature Extraction using ANN

In this section, the intuitive idea presented above is used to form a statistically
plausible objective function whose minimization will be those projections having a
single dimensional projected distribution that is far from Gaussian. This is done
using a loss function whose expected value leads to the desired projection index.
Mathematical details are given in Intrator (1990).

Before presenting this loss function, let us review some necessary notations and as-
sumptions. Consider a neuron with input vector z = (z1,...,zx), synaptic weights
vector m = (my, ..., my), both in R", and activity (in the linear region) ¢ = z-m.
Define the threshold ©,, = E[(z - m)?], and the functions ¢(c,©,,) = ¢? — 3¢O,,,

#(c,Om) = c2— %c@m. The ¢ function has been suggested as a biologically plausible
synaptic modification function that explains visual cortical plasticity (Bienenstock,
Cooper and Munro, 1982). Note that at this point c represents the linear projection
of x onto m, and we seek an optimal projection in some sense.

We want to base our projection index on polynomial moments of low order, and
to use the fact that bimodal distribution is already interesting, and any additional
mode should make the distribution even more interesting. With this in mind, con-
sider the following family of loss functions which depend on the synaptic weight
vector and on the input z;

(z-m)
n H -
In(e)=-u [ (s,0m)ds = ~5{(e-m)® - Bl(z-m))a m)?},
O,

The motivation for this loss function can be seen in the following graph, which
represents the ¢ function and the associated loss function L, (z). For simplicity
the loss for a fixed threshold ©,, and synaptic vector m can be written as L,,(c) =
—&c*(c — Om), where ¢ = (z - m).
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THIE: g AND LOSS FUNCTIONS

Figure 1: The function ¢ and the loss functions for a fixed m and ©,,.

The graph of the loss function shows that for any fixed m and ©,,, the loss is
small for a given input z, when either (z - m) is close to zero, or when (z - m) is
larger than %@m. Moreover, the loss function remains negative for (z - m) > %Gm,

therefore, any kind of distribution at the right hand side of %Om is possible, and
the preferred ones are those which are concentrated further away from %@m.

We must still show why it is not possible that a minimizer of the average loss will be
such that all the mass of the distribution will be concentrated in one of the regions.
Roughly speaking, this can not happen because the threshold ©,, is dynamic and
depends on the projections in a nonlinear way, namely, ©,, = E(x - m)?. This
implies that ©,, will always move itself to a stable point such that the distribution
will not be concentrated at only one of its sides. This yields that the part of the
distribution for ¢ < %G)m has a high loss, making those distributions in which the

distribution for ¢ < %@m has its mode at zero more plausible.

The risk (expected value of the loss) is given by:
Rm = —2 {E[(z - m)*] - E*[(=- m)"]}.

Since the risk is continuously differentiable, its minimization can be achieved via a
gradient descent method with respect to m, namely:
dm; d

dtz i =~ T R, = p E[¢p(z-m,0,,)z;].

The resulting differential equations suggest a modified version of the law governing
synaptic weight modification in the BCM theory for learning and memory (Bienen-
stock, Cooper and Munro, 1982). This theory was presented to account for various
experimental results in visual cortical plasticity. The biological relevance of the
theory has been extensively studied (Soul et al., 1986; Bear et al., 1987; Cooper et
al., 1987; Bear et al., 1988), and it was shown that the theory is in agreement with
the classical deprivation experiments (Clothioux et al., 1990).

The fact that the distribution has part of its mass on both sides of %G)m makes this
loss a plausible projection index that seeks multimodalities. However, we still need
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to reduce the sensitivity of the projection index to outliers, and for full generality,
allow any projected distribution to be shifted so that the part of the distribution
that satisfies ¢ < %@m will have its mode at zero. The over-sensitivity to outliers
is addressed by considering a nonlinear neuron in which the neuron’s activity is
defined to be ¢ = o(x - m), where o usually represents a smooth sigmoidal function.
A more general definition that would allow symmetry breaking of the projected
distributions, will provide solution to the second problem raised above, and is still
consistent with the statistical formulation, is ¢ = o(z - m — a), for an arbitrary
threshold a which can be found by using gradient descent as well. For the nonlinear
neuron, O, is defined to be ©,, = E[o*(z - m)].

Based on this formulation, a network of Q identical nodes may be constructed. All
the neurons in this network receive the same input and inhibit each other, so as
to extract several features in parallel. A similar network has been studied in the
context of mean field theory by Scofield and Cooper (1985). The activity of neuron
k in the network is defined as cx = o(x - my. — ay), where nmy is the synaptic weight
vector of neuron k, and a; is its threshold. The inhibited activity and threshold of
the k’th neuron are given by & = cx — 7}, 4 ¢, ek = E[&).

We omit the derivation of the synaptic modification equations which is similar to
the one for a single neuron, and present only the resulting modification equations
for a synaptic vector m; in a lateral inhibition network of nonlinear neurons:

my = —pu E{$(Cx, é,’fn)(a'(ck) - nZo"(c,-))a:}.
1#£k

The lateral inhibition network performs a direct search of Q-dimensional projections
together, and therefore may find a richer structure that a stepwise approach may
miss, e.g. see example 14.1 Huber (1985).

3 Comparison with other feature extraction methods

When dealing with a classification problem, the interesting features are those that
distinguish between classes. The network presented above has been shown to seek
multimodality in the projected distributions, which translates to clusters in the
original space, and therefore to find those directions that make a distinction between
different sets in the training data.

In this section we compare classification performance of a network that performs
dimensionality reduction (before the classification) based upon multimodality, and
a network that performs dimensionality reduction based upon minimization of mis-
classification error (using back-propagation with MSE criterion). This is done using
a phoneme classification experiment whose linguistic motivation is described below.
In the latter we regard the hidden units representation as a new reduced feature
representation of the input space. Classification on the new feature space was done
using back-propagation’

!See Intrator (1990) for comparison with principal components feature extraction and
with k-NN as a classifier












