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Abstract 

A neural network model of motion segmentation by visual cortex is de­
scribed. The model clarifies how preprocessing of motion signals by a 
Motion Oriented Contrast Filter (MOC Filter) is joined to long-range co­
operative motion mechanisms in a motion Cooperative Competitive Loop 
(CC Loop) to control phenomena such as as induced motion, motion cap­
ture, and motion aftereffects. The total model system is a motion Bound­
ary Contour System (BCS) that is computed in parallel with a static BCS 
before both systems cooperate to generate a boundary representation for 
three dimensional visual form perception. The present investigations clari­
fy how the static BCS can be modified for use in motion segmentation prob­
lems, notably for analyzing how ambiguous local movements (the aperture 
problem) on a complex moving shape are suppressed and actively reorga­
nized into a coherent global motion signal. 

1 INTRODUCTION: WHY ARE STATIC AND MOTION 
BOUNDARY CONTOUR SYSTEMS NEEDED? 

Some regions, notably MT, of visual cortex are specialized for motion processing. 
However, even the earliest stages of visual cortex processing, such as simple cells in 
VI, require stimuli that change through time for their maximal activation and are 
direction-sensitive. Why has evolution generated regions such as MT, when even 
VI is change-sensitive and direction-sensitive? What computational properties are 
achieved by MT that are not already available in VI? 

342 



Neural Dynamics of Motion Segmentation and Grouping 343 

The monocular Boundary Contour System (BCS) theory of Grossberg and Mingolla 
(1985a, 1985b, 1987), and its binocular generalization (Grossberg, 1987, Grossberg 
& Marshall, 1989), has modeled many boundary segmentation properties of VI 
and its prestriate projections. The BCS has until now been used to analyze data 
generated in response to static visual images. Henceforth I will therefore call such a 
BCS a static BCS model. Nonetheless its model cells can be gated by cells sensitive 
to image transients to generate receptive fields sensitive to visual motion. How does 
a motion BCS differ from a static BCS whose cells are sensitive to image transients? 

2 STATIC AND MOTION FILTERING: 
DIRECTION-OF-CONTRAST AND 
DIRECTION-OF-MOTION 

That boundaries of opposite direction-of-contrast are perceptually linked is vividly 
illustrated by the reverse-contrast Kanizsa square. A fundamental property of the 
front end of the BCS, which is a Static Oriented Contrast Filter (SOC Filter), is 
that its output is insensitive to direction-of-contrast, in order to support perception 
of boundaries in variable illumination. This insensitivity is achieved through the 
pooling by units identified with complex cells of information of units identified with 
simple cells, whose receptive fields are elongated and sensitive to opposite contrast 
polarities. The pooling implies that the complex cell layer of the SOC Filter is 
insensitive to direction-of-motion, as well as to direction-of-contrast. Evidently, any 
useful filter that will act as the front-end of a motion segmentation system must be 
sensitive to direction-of-motion while being insensitive to direction-of-contrast. 

3 GLOBAL SEGMENTATION AND GROUPING: 
FROM LOCALLY AMBIGUOUS MOTION SIGNALS 
TO COHERENT OBJECT MOTION SIGNALS 

In their discussion of "velocity space," Adelson and Movshon (198~, 1982) introduce 
diagrams similar to Figure la to illustrate local motion direction (and speed) ambi­
guity from information confined to an aperture. In Figure la the length of arrows 
codes possible trajectories of a point which would be consistent with the measured 
change of contrast over time of the cell in question; for this reason, it is sometimes 
said that early cells are sensitive to only the normal component of velocity. Figure 
IB shows another view of this situation; the length of arrows is roughly proportion­
al to a cell's "prior probability distribution" for interpreting changing stimulation 
as occurring in one of several directions, of which the direction perpendicular to 
the cell receptive field's axis of orientation is locally prefened. Note that in this 
conception, if a cell with an oriented receptive field (e.g. a simple cell) is being stim­
ulated by an edge that is not perfectly aligned with its receptive field's dark-to-light 
contrast axis, its "preferred direction" will not correspond to that perpendicular to 
the edge. In this case, however, it is assumed that within a hypercolumn of cells 
tuned to similar spatial frequency, contrast, and temporal parameters but varying 
in preferred orientation, some other cell whose preferred orientation was more near­
ly aligned with the edge would generate a stronger signal than the cell in question. 
Thus, the distribution of motion signals across cells tuned to aU orientations would 
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favor the direction perpendicular to the orientation of the edge . 

. .. .. .. 
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Figure 1: Motion direction ambiguity along an edge 

4 STATIC AND MOTION COOPERATIVE GROUPING 

The static BCS contains a process of for long-range completion, regularization, 
and grouping which is mediated by a cooperative-competitive feedback loop (CC 
Loop) whose competitive layer is identified with hypercomplex cells ofV2 and whose 
cooperative layer contains units called "bipole cells," which are hypothesized to exist 
in the projections of V2 cells. The CC Loop seeks to form and sharpen boundaries 
whenever evidence from bottom-up inputs in two regions indicates that a collinear 
(possibly curved) continuation of boundary activity is called for. A horizontally 
tuned bipole cell sends feedback to horizontally tuned cells in the competitive layer. 

In considering how the static CC Loop must be modified to deal with motion seg­
mentation, consider that motion is not binary but continuously valued; headings 
can be, for example, "north by northwest." The analysis of moving contours thus 
requires one more degree of freedom than the analysis of static contours, for a con­
tour of a given orientation can be moving in an infinity of directions, and conversely 
contours of any orientation can be moving in the same direction; thus a modification 
in the structure of the static BCS is required. Consider again the aperture problem. 
In the barberpole illusion the perception of motion direction along entire contours 
- whose measurement by cells with localized receptive fields is everywhere subject 
to the aperture problem - is determined by the perceived motion of their endpoints 
(Wallach,1976). Endstopping in simple cells of the MOC Filter can provide the 
enhancement of signals from segment endpoints, enabling the cooperative bipole 
cells of the motion CC Loop to reorganize the ambiguous local motion signals from 
the interiors of the diagonal segments into signals that are consistent with those of 
the endpoints. 

5 GENERALIZING THE GROSSBERG-RUDD MOC 
FILTER FOR SEGMENTATION AND GROUPING 

The origina.l Grossberg & Rudd MOC Filter is illustra.ted in Figure 2. The goal is to 
generalize certain of its functions to handle 2-D (two-dimensional) motion segmen­
tation issues. The MOC Filter is insensitive to direction-of-contrast but sensitive 
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to direction-of-motion. Levell registers the input pattern. Level 2 consists of sus­
tained response cells with oriented receptive fields that are sensitive to direction-of­
contrast . Level 3 consists of transient response cells with unoriented receptive fields 
that are sensitive to direction of change in the total cell input. Level 4 cells combine 
sustained cell and transient cell signals to become sensitive to direction-of-motion 
and sensitive to direction-of-contrast. Level 5 cells combine Level 4 cells to become 
sensitive to direction-of-motion and insensitive to direction-of-contrast. 
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Figure 2: The Motion Oriented Contrast (MOC) Filter 

The full domain of motion segmentation and grouping includes such problems a.<; de­
termining structure in depth from motion, motion transparency, and motion group­
ing amid occlusion. Although the motion BCS is conceived with these and related 
difficult phenomena in mind, I will instead focus on the elementary grouping op­
erations necessary to perform detections of object motion within the visual field. 
Even here difficult issues arise. Consider the lower right corner of a homogeneous 
rectangular form of relatively high luminance that is moving diagonally upward 
and to the right on a homogeneous background of relatively low luminance. (See 
Figure 3a.) In region A dark-to-light (luminance increasing over time) transition 
occurs at a vertical edge, while in region B a light-to-dark (luminance decreasing 
over time) transition occurs at a horizontal edge. Both the regions of horizontal 
and vertical contrast near the corner provide signals to the MOC Filter, provided 
that the sustained cells of Level 2 (Figure 2) are taken to be spatially laid out as 
indicated in Figure 3b. Over three successive time increments, the contours of the 
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rectangle of Figure 3a occur in the positions indicated, while luminance increases 
along the vertical edge and decreases along the horizontal edge. If certain of the 
sustained cell receptive fields sending inputs to Level 4 of the MOC Filter (Figure 
2) were arranged as indicated, a diagonal motion signal could be generated from 
both vertically and horizontally oriented cells, in conjunction with luminance gating 
signals of opposite signs. (Of course, motion signals of many other directions will 
also be generated along the lengths of the horizontal and vertical edges; these will 
be considered subsequently.) In other words, for at least some of the gating nodes 
of Layer 4 (Figure 2), the layout of receptive field centers of contributing sustained 
cells of Layer 2 is taken to be in a direction diagonal to the orientational prefer­
ence of the individual sustained cells. It would make no sense to build a motion 
filter whose receptive field centers were arrayed collinearly with the contributing 
sustained cell's orientational preference - although this type of arrangement might 
be suitable for collinear completion in a static form system. Accordingly, it appears 
that a variant of a "sine law" exists, whereby the contribution of any sustained cell 
at Level 2 to Level 4 gating cell is modulated by the (absolute value of the) sine 
of the angle formed between the sustained cell's orientational preference and the 
gating cell's directional preference. 

motion: 

If 
motion: 

If 
t=2 t=2 

t=l t=l 

t=O t=O 
luminance luminance 

Figure 3: The corner of a light rectangle moving diagona.lly 

The long range filter (Level 5, Figure 2) can simultaneously accept motion signals 
from both the horizonta.l and vertical edges of the moving corner, despite the gat­
ing of one set of signals by transient "luminance increasing" detectors (Level 3, 
Figure 2) and gating of another set by "luminance decreasing" detectors. Thus 
while simultaneous increase and decrease of luminance is logically impossible in an 
infinitesimal area, and while a too rapid change from increase to decrease may be 
unresolvable by sustained cells at Level 2, the simultaneous nearby increase and de­
crease of luminance with a coherent trajectory or direction despite different contour 
orientations is fodder for the long-range filter. Note that the long-range filter of the 
MOC Filter is not the same as the long-range grouping stage of the CC Loop. 
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6 ENDSTOPPING: GENERATION OF A 
TERMINATOR OR CORNER ADVANTAGE IN 
MOTION SIGNALS 

In discussing the barberpole illusion I referred to an "advantage" for motion signals 
near terminators or corners of contours. The designation "advantage" connotes that 
those signals tend to be better indicators of object motion than signals generated 
from a relatively straight interior of a contour. For this advantage to be manifest in 
perception, however, that advantage must also be one of signal strength, the more 
so because the regions or spatial extent of interior motion signals is often larger 
than the region of terminator or corner signals. The source of the advantage would 
appear to involve endstopping at the very front end of the Moe Filter. Many simple 
cells, identified with the orientation and direction-of-contrast sensitive sustained 
cells of Level 2 of the MaC Filter, exhibit endstopping (Dreher, 1972.) (Note that 
this endstopping is functionally analogous to the first competitive stage of the SOC 
Filter.) Strong endstopping, whereby only signals at terminators survive, can reduce 
the problem of determining motion direction to one of tracking an isolated region of 
activity. In the ca.<;e of weak endstopping considered here, however, surviving signals 
indicating "locally preferred" directions can continue to confound the problem of 
motion segmentation and grouping. 

7 CONSENSUS AT CORNERS: GAUSSIAN SPACE 
AVERAGING AND DIRECTIONAL COMPETITION 

In the weak endstopping case the local motion signa.Js from the lower right cor­
ner of the moving rectangle would have roughly the form diagramed in Figure 4a. 
While there is some preference for diagonal (up-and-to-the-right) signals, local mo­
tion signals of other directions also exist. (b) A mechanism is needed to combine 
different directions signals into a single coherent local direction signal. (c) The sig­
nal combination can be accomplished by a motion analog of the second competitive 
stage among orientations of the soc Filter, as described in Grossberg & MingoJla, 
(1987). A excitatory on-center, inhibitory off-surround network organization among 
cells coding different directions-of-motion at the same position can accomplish the 
desired pooling and choice through competitive peak summation and sharpening. 
Note that the domain of spatial averaging of the Gaussian filter (transition from 
Level 4 to Level 5 of the MaC Filter) is presumed to be large enough to span the 
signals generated by the ends of the leading vertical and trailing horizontal edges. 
At Level 5, then, signals of many directions occur for cells coding the same posi­
tion. Those directions will have the appropriate "central tendency", however, and 
a simple center-surround competition in the space of directions, analogous to the 
revised version of the second competitive stage (for orientations) of the static BCS 
described by Grossberg & Mingolla (1987), suffices to choose the direction which is 
most consistent with surrounding input data at each location. (See Figure 4b.) 

In this article I have described motion analysis mechanisms whereby the visual 
system frees itself from an excessive reliance on either purely local (short-range fil­
tering) computations or top-down (cognitive or expectancy based) computations. 
Instead, within a perceptual middle ground, competitive and cooperative interac-
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tions withing a parallel and structured network with several scales of interaction 
help to choose and enhance those aspects of local data which contribute to coherent 
and consistent measures of object motion. 

+ ® @ 
(b) 
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Figure 4: Resolution of ambiguous signals at corners 
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