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Abstract 

The ALVINN (Autonomous Land Vehicle In a Neural Network) project addresses 
the problem of training artificial neural networks in real time to perform difficult 
perception tasks. ALVINN ,is a back-propagation network that uses inputs from a 
video camera and an imaging laser rangefinder to drive the CMU Navlab, a modified 
Chevy van. This paper describes training techniques which allow ALVINN to learn 
in under 5 minutes to autonomously control the Navlab by watching a human driver's 
response to new situations. Using these techniques, ALVINN has been trained 
to drive in a variety of circumstances including single-lane paved and unpaved 
roads, multilane lined and unlined roads, and obstacle-ridden on- and off-road 
environments, at speeds of up to 20 miles per hour. 

1 INTRODUCTION 

Previous trainable connectionist perception systems have often ignored important aspects of 
the form and content of available sensor data. Because of the assumed impracticality of 
training networks to perform realistic high level perception tasks, connectionist researchers 
have frequently restricted their task domains to either toy problems (e.g. the T-C identification 
problem [11] [6]) or fixed low level operations (e.g. edge detection [8]). While these restricted 
domains can provide valuable insight into connectionist architectures and implementation 
techniques, they frequently ignore the complexities associated with real world problems. 

There are exceptions to this trend towards simplified tasks. Notable successes in high level 
domains such as speech recognition [12], character recognition [5] and face recognition [2] 
have been achieved using real sensor data. However, the results have come only in very 
controlled environments, after careful preprocessing of the input to segment and label the 
training exemplars. In addition, these successful connectionist perception systems have 
ignored the fact that sensor data normally becomes available gradually and not as a monolithic 
training set. In short, artificial neural networks previously have never been successfully trained 
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Figure 1: ALVINN's previous (left) and current (right) architectures 

using sensor data in real time to perform a real world perception task. 

The ALVINN (Autonomous Land Vehicle In a Neural Network) system remedies this short­
coming. ALVINN is a back-propagation network designed to drive the CMU Navlab. a 
modified Chevy van. Using real time training techniques, the system quickly learns to au­
tonomously control the Navlab by watching a human driver's reactions. ALVINN has been 
trained to drive in a variety of circumstances including single-lane paved and unpaved roads, 
multilane lined and unlined roads and obstacle ridden on- and off-road environments, at 
speeds of up to 20 miles per hour. This paper will primarily focus on improvements and 
extensions made to the AL VINN system since the presentation of this work at the 1988 NIPS 
conference [9]. 

2 NETWORK ARCHITECTURE 

The current architecture for an individual ALVINN driving network is significantly simpler 
than the previous version (See Figure 1). The input layer now consists of a single 30x32 unit 
"retina" onto which a sensor image from either the video camera or the laser rangefinder is 
projected. Each of the 960 input units is fully connected to the hidden layer of 5 units, which 
is in tum fully connected to the output layer. The 30 unit output layer is a linear representation 
of the currently appropriate steering direction which may serve to keep the vehicle on the road 
or to prevent it from colliding with nearby obstacles l . The centermost output unit represents 
the "travel straight ahead" condition, while units to the left and right of center represent 
successively sharper left and right turns. 

The reductions in network complexity over previous versions have been made in response 
to experience with ALVINN in actual driving situations. I have found that the distributed 
nature of the internal representation allows a network of only 5 hidden units to accurately 
drive in a variety of situations. I have also learned that multiple sensor inputs to a single 
network are redundant and can be eliminated. For instance, when training a network on a 
single-lane road, there is sufficient information in the video image alone for accurate driving. 
Similarly, for obstacle avoidance, the laser rangefinder image is sufficient and the video image 

IThe task a particular driving network perfonns depends on the type of input sensor image and the 
driving situation it has been trained to handle. 
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is superfluous. The road intensity feedback unit has been eliminated on similar grounds. In 
the previous architecture, it provided the network with the relative intensity of the road vs. 
the non-road in the previous image. This information was unnecessary for accurate road 
following, and undefined in new ALVINN domains such as off-road driving. 

To drive the Navlab, an image from the appropriate sensor is reduced to 30 x 32 pixels and 
projected onto the input layer. After propagating activation through the network, the output 
layer's activation prOfile is translated into a vehicle steering command. The steering direction 
dictated by the network is taken to be the center of mass of the "hill" of activation surrounding 
the output unit with the highest activation leveL Using the center of mass of activation instead 
of the most active output unit when determining the direction to steer permits finer steering 
corrections, thus improving ALVINN's driving accuracy. 

3 TRAINING "ON -THE-FLY" 

The most interesting recent improvement to ALVINN is the training teChnique. Originally, 
ALVINN was trained with backpropagation using 1200 simulated scenes portraying roads 
under a wide variety of weather and lighting conditions [9]. Once trained, the network was 
able to drive the Navlab at up to 1.8 meters per second (3.5 mph) along a 400 meter path 
through a wooded area of the CMU campus in weather which included snowy, rainy, sunny" 
and cloudy situations. 

Despite its apparent success, this training paradigm had serious shortcomings. It required 
approximately 6 hours of Sun-4 CPU time to generate the synthetic road scenes, and then an 
additional 45 minutes of Warp2 computation time to train the network. Furthermore, while 
effective at training the network to drive on a single-lane road, extending the synthetic training 
paradigm to deal with more complex driving situations like multilane and off-road driving 
would have required prohibitively complex artificial scene generators. 

I have developed a scheme called training "on-the-fiy" to deal with these problems. Using 
this technique, the network learns to imitate a person as he drives. The network is trained 
with back-propagation using the latest video camera image as input and the person's current 
steering direction as the desired output. 

There are two potential problems associated with this simple training on-the-fiy scheme. First, 
since the person steers the vehicle down the center of the road during training, the network 
will never be presented with situations where it must recover from misalignment errors. When 
driving for itself, the network may occasionally stray from the road center, so it must be 
prepared to recover by steering the vehicle back to the middle of the road. The second 
problem is that naively training the network with only the current video image and steering 
direction may cause it to overlearn recent inputs. If the person drives the Navlab down a 
stretch of straight road near the end of training, the network will be presented with a long 
sequence of similar images. This sustained lack of diversity in the training set will cause the 
network to "forget" what it had learned about driving on curved roads and instead learn to 
always steer straight ahead. 

Both problems associated with training on-the-fiy stem from the fact that back-propagation 
requires training data which is representative of the full task to be learned. To provide the 
necessary variety of exemplars while still training on real data, the simple training on-the-

2There was fonnerly a 100 MFLOP Warp systolic array supercomputer onboard the Navlab. It has 
been replaced by 3 Sun-4s, further necessitating the streamlined architecture described in the previous 
section. 
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Figure 2: The single original video image is shifted and rotated to create multiple training 
exemplars in which the vehicle appears to be a different locations relative to the road. 

fly scheme described' above must be modified. Instead of presenting the network with only 
the current video image and steering direction, each original image is shifted and rotated in 
software to create 14 additional images in which the vehicle appears to be situated differently 
relative to the environment (See Figure 2). The sensor's position and orientation relative to 
the ground plane are known, so precise transformations can be achieved using perspective 
geometry. The correct steering direction as dictated by the driver for the original image is 
altered for each of the transformed images to account for the altered vehicle placement3 . 

Using transformed training patterns allows the network to learn how to recover from driving 
errors. Also, overtraining on repetitive images is less of a problem, since the transfonned 
training exemplars add variety to the training set. As additional insurance against the effects 
of repetitive exemplars, the training set diversity is further increased by maintaining a buffer 
of previously encountered training patterns. 

In practice, training on-the-fly works as follows. A live sensor image is digitized and reduced 
to the low resolution image required by the network. This single original image is shifted and 
rotated 14 times to create 14 additional training exemplars4 . Fifteen old exemplars from the 
current training set of 200 patterns are chosen and replaced by the 15 new exemplars. The 15 
exemplars to be replaced in the training set are chosen on the basis of how closely they match 
the steering direction of one of the new tokens. Exchanging a new token for an old token with 
a similar steering direction helps maintain diversity in the training buffer during monotonous 
stretches of road by preventing novel older patterns from being replaced by recent redundant 
ones. 

After this replacement process, one forward and one backward pass of the baCk-propagation 
algorithm is performed on the 200 exemplars to update the network's weights. The entire 
process is then repeated. The network requires approximately 50 iterations through this 
digitize-replace-train cycle to learn to drive in the domains that have been tested. Running 

3 A simple steering model is used when transforming the driver's original direction. It assumes the 
"correct" steering direction is the one that will eliminate the additional vehicle translation and rotation 
introduced by the transformation and bringing the vehicle to the point the person was originally steering 
towards a fixed distance ahead of the vehicle. 

4The shifts are chosen randomly from the range -1.25 to + 1.25 meters and the rotations from the 
range -6.0 to +6.0 degrees. 
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Figure 3: Video images taken on three of the test roads ALVINN has been trained to drive on. 
They are, from left to right, a single-lane dirt access road, a single-lane paved bicycle path, 
and a lined two-lane highway. 

on a Sun-4, this takes about five minutes during which a person drives the Navlab at about 4 
miles per hour over the training road. 

4 RESULTS AND DISCUSSION 

Once it has learned, the network can accurately traverse the length of road used for training 
and also generalize to drive along parts of the road it has never encountered under a variety 
of weather conditions. In addition, since determining the steering direction from the input 
image merely involves a forward sweep through the network, the system is able to process 25 
images per second, allowing it to drive at up to the Navlab's maximum speed of20 miles per 
hou~. This is over twice as fast as any other sensor-based autonomous system has driven the 
Navlab [3] [7]. 

The training on-the-fly scheme gives ALVINN a flexibility which is novel among autonomous 
navigation systems. It has allowed me to successfully train individual networks to drive in 
a variety of situations, including a single-lane dirt access road, a single-lane paved bicycle 
path, a two-lane suburban neighborhood street, and a lined two-lane highway (See Figure 3). 
Using other sensor modalities as input, including laser range images and laser reflectance 
images, individual ALVINN networks have been trained to follow roads in total darkness, 
to avoid collisions in obstacle rich environments, and to follow alongside railroad tracks. 
ALVINN networks have driven in each of these situations for up to 1/2 mile, until reaching a 
dead end or a difficult intersection. The development of a system for each of these domains 
using the "traditional approach" to autonomous navigation would require the programmer to 
1) determine what features are important for the particular task, 2) program detectors (using 
statistical or symbolic techniques) for finding these important features and 3) develop an 
algorithm for determining which direction to steer from the location of the detected features. 

In contrast, ALVINN is able to learn for each new domain what image features are important, 
how to detect them and how to use their position to steer the vehicle. Analysis of the 
hidden unit representations developed in different driving situations shows that the network 
forms detectors for the image features which correlate with the correct steering direction. 
When trained on multi-lane roads, the network develops hidden unit feature detectors for the 
lines painted on the road, while in single-lane driving situations, the detectors developed are 

5The Navlab has a hydraulic drive system which allows for very precise speed control, but which 
prevents the vehicle from driving over 20 miles per hour. 
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sensitive to road edges and rOad-shaped regions of similar intensity in the image. For a more 
detailed analysis of ALVINN's internal representations see [9] [10]. 

This ability to utilize arbitrary image features can be problematic. This was the case when 
ALVINN was trained to drive on a poorly defined dirt road with a distinct ditch on its right side. 
The network had no problem learning and then driving autonomously in one direction, but 
when driving the other way, the network was erratic, swerving from one side of the road to the 
other. After analyzing the network's hidden representation, the reason for its difficulty became 
clear. Because of the poor distinction between the road and the non-road, the network had 
developed only weak detectors for the road itself and instead relied heavily on the position of 
the ditch to determine the direction to steer. When tested in the opposite direction, the network 
was able to keep the vehicle on the road using its weak road detectors but was unstable because 
the ditch it had learned to look for on the right side was now on the left. Individual ALVINN 
networks have a tendency to rely on any image feature consistently correlated with the correct 
steering direction. Therefore, it is important to expose them to a wide enough variety of 
situations during training so as to minimize the effects of transient image features. 

On the other hand, experience has shown that it is more efficient to train several domain 
specific networks for circumstances like one-lane vs. two-lane driving, instead training a 
single network for all situations. To prevent this network specificity from reducing ALVINN's 
generality, I am currently implementing connectionist and non-connectionist techniques for 
combining networks trained for different driving situations. Using a simple rule-based priority 
system similar to the subsumption architecture [1], I have recently combined a road following 
network and an obstacle avoidance network. The road following network uses video camera 
input to follow a single-lane road. The obstacle avoidance network uses laser rangefinder 
images as input. It is trained to swerve appropriately to prevent a collision when confronted 
with obstacles and to drive straight when the terrain ahead is free of obstructions. The 
arbitration rule gives priority to the road following network when determining the steering 
direction, except when the obstacle avoidance network outputs a sharp steering command. In 
this case, the urgency of avoiding an imminent collision takes precedence over road following 
and the steering direction is determined by the obstacle avoidance network. Together, the 
two networks and the arbitration rule comprise a system capable of staying on the road and 
swerving to prevent collisions. 

To facilitate other rule-based arbitration teChniques, I am currently adding to ALVINN a 
non-connectionist module which maintains the vehicle's position on a map. Knowing its map 
position will allow ALVINN to use arbitration rules such as "when on a stretch of two lane 
highway, rely primarily on the two lane highway network". This symbolic mapping module 
will also allow ALVINN to make high level, goal-oriented decisions such as which way to 
tum at intersections and when to stop at a predetermined destination. 

Finally, I am experimenting with connectionist techniques, such as the task decomposition 
architecture [6] and the meta-pi architecture [4], for combining networks more seamlessly 
than is possible with symbolic rules. These connectionist arbitration techniques will enable 
ALVINN to combine outputs from networks trained to perform the same task using different 
sensor modalities and to decide when a new expert must be trained to handle the current 
situation. 
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