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ABSTRACT

A simple method for training the dynamical behavior of a neu-
ral network is derived. It is applicable to any training problem
in discrete-time networks with arbitrary feedback. The algorithm
resembles back-propagation in that an error function is minimized
using a gradient-based method, but the optimization is carried out
in the hidden part of state space either instead of, or in addition to
weight space. Computational results are presented for some simple
dynamical training problems, one of which requires response to a
signal 100 time steps in the past.

1 INTRODUCTION

This paper presents a minimization-based algorithm for training the dynamical be-
havior of a discrete-time neural network model. The central idea is to treat hidden
nodes as target nodes with variable training data. These “moving targets” are
varied during the minimization process. Werbos (Werbos, 1983) used the term
“moving targets” to describe the qualitative idea that a network should set itself
intermediate objectives, and vary these objectives as information is accumulated on
their attainability and their usefulness for achieving overall objectives. The (coin-
cidentally) like-named algorithm presented here can be regarded as a quantitative
realization of this qualitative idea.

The literature contains several temporal training algorithms based on minimization
of an error measure with respect to the weights. This type of method includes
the straightforward extension of the back-propagation method to back-propagation
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through time (Rumelhart, 1986), the methods of Rohwer and Forrest (Rohwer,
1987), Pearlmutter (Pearlmutter, 1989), and the forward propagation of derivatives
(Robinson, 1988, Williams 1989a, Williams 1989b, Kuhn, 1990). A careful compar-
ison of moving targets with back-propagation in time and teacher forcing appears in
(Rohwer, 1989b). Although applicable only to fixed-point training, the algorithms
of Almeida (Almeida, 1989) and Pineda (Pineda, 1988) have much in common with
these dynamical training algorithms. The formal relationship between these and
the method of Rohwer and Forrest is spelled out in (Rohwer 1989a).

2 NOTATION AND STATEMENT OF THE TRAINING
PROBLEM

Consider a neural network model with arbitrary feedback as a dynamical system in
which the dynamical variables z;; change with time according to a dynamical law
given by the mapping

Zit = zwijf[mj,t—l) :>0
;

Zg¢ = Dbias constant

(1)

unless specified otherwise. The weights w;; are arbitrary parameters representing
the connection strength from node ; to node :. f is an arbitrary differentiable
function. Let us call any given variable z;; the “activation” on node 1 at time ¢. It
represents the total input into node 1 at time t. Let the “utput” of each node be
denoted by y;s = f(z;t). Let node 0 be a “bias node”, assigned a positive constant
activation so that the weights w;o can be interpreted as activation thresholds.

In normal back-propagation, a network architecture is defined which divides the
network into input, hidden, and target nodes. The moving targets algorithm makes
itself applicable to arbitrary training problems by defining analogous concepts in a
manner dependent upon the training data, but independent of the network archi-
tecture. Let us call a node-time pair an “event”. To define a training problem, the
set of all events must be divided into three disjoint sets, the snput events I, target
events T, and hidden events H. A node may participate in different types of event
at different times. For every input event (it) € I, we require training data X;; with
which to overrule the dynamical law (1) using

zie =X (st) € 1. (2)

(The bias events (0t) can be regarded as a special case of input events.) For each
target event (it) € T, we require training data X;; to specify a desired activation
value for event (0t). No notational ambiguity arises from referring to input and
target data with the same symbol X because I and T are required to be disjoint
sets. The training data says nothing about the hidden events in H. There is no
restriction on how the initial events (:0) are classified.
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3 THE “MOVING TARGETS” METHOD

Like back-propagation, the moving targets training method uses (arbitrary) gradient-
based minimization techniques to minimize an “error” function such as the “output

deficit”
Eod = % Z {yit = Y;'t}zs [3)
(it)eT

where y;¢ = f(z::) and Y;; = f(X;:). A modification of the output deficit error gave
the best results in numerical experiments. However, the most elegant formalism
follows from an “actsvation deficit” error function:

Ead — % z {:L','t — X,‘g}g, (4)
(st)eT

so this is what we shall use to present the formalism.

The basic idea is to treat the hidden node activations as variable target activations.
Therefore let us denote these variables as X;;, just as the (fixed) targets and inputs
are denoted. Let us write the computed activation values z;, of the hidden and
target events in terms of the inputs and (fixed and moving) targets of the previous
time step. Then let us extend the sum in (4) to include the hidden events, so the
error becomes

2

Bet ¥ T s Kies) = Xa | - ®

(st)eTuH | J

This is a function of the weights w;;, and because there are no z’s present, the full
dependence on w;; is explicitly displayed. We do not actually have desired values
for the X;; with (it) € H. But any values for which weights can be found which
make (5) vanish would be suitable, because this would imply not only that the
desired targets are attained, but also that the dynamical law is followed on both
the hidden and target nodes. Therefore let us regard E as a function of both the
weights and the “moving targets® X, (:t) € H. This is the essence of the method.
The derivatives with respect to all of the independent variables can be computed
and plugged into a standard minimization algorithm.

The reason for preferring the activation deficit form of the error (4) to the output
deficit form (3) is that the activation deficit form makes (5) purely quadratic in the
weights. Therefore the equations for the minimum,

dE/dw,—,- = BE/c?w.J = 0, (6)

form a linear system, the solution of which provides the optimal weights for any
given set of moving targets. Therefore these equations might as well be used to
define the weights as functions of the moving targets, thereby making the error (5)
a function of the moving targets alone.
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The derivation of the derivatives with respect to the moving targets is spelled out
in (Rohwer, 1989b). The result is:

dE

5{_ = ZXi.a+lei.a+1wiaf:u — Xas€as) (7)

where

_J1 (i) € TUH
'X"*—{o (it) ¢ TUH (8)
et = Z w;; f(Xj.e-1) — Xie, (9)
=4 (10)
z=Xi¢
and

wi; = z (Z Xa‘zX:‘:Yk.t—1) M;E;-)_I: (11)
t

k

where M(®)=1 ig the inverse of M (%), the correlation matrix of the node outputs
defined by

M,-(;-') = zx;:t},i,f.—ly:f.t—l- (12)
t

In the event that any of the matrices M are singular, a pseudo-inversion method
such as singular value decomposition (Press, 1988) can be used to define a unique
solution among the infinite number available.

Note also that (11) calls for a separate matrix inversion for each node. However if
the set of input nodes remains fixed for all time, then all these matrices are equal.

3.1 FEEDFORWARD VERSION

The basic ideas used in the moving targets algorithm can be applied to feedfor-
ward networks to provide an alternative method to back-propagation. The hidden
node activations for each training example become the moving target variables.
Further details appear in (Rohwer, 1989b). The moving targets method for feedfor-
ward nets is analogous to the method of Grossman, Meir, and Domany (Grossman,
1990a, 1990b) for networks with discrete node values. Birmiwal, Sarwal, and Sinha
(Birmiwal, 1989) have developed an algorithm for feedforward networks which in-
corporates the use of hidden node values as fundamental variables and a linear
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system of equations for obtaining the weight matrix. Their algorithm differs from
the feedforward version of moving targets mainly in the (inessential) use of a specific
minimization algorithm which discards most of the gradient information except for
the signs of the various derivatives. Heileman, Georgiopoulos, and Brown (Heile-
man, 1989) also have an algorithm which bears some resemblance to the feedforward
version of moving targets. Another similar algorithm has been developed by Krogh,
Hertz, and Thorbergasson (Krogh, 1989, 1990).

4 COMPUTATIONAL RESULTS

A set of numerical experiments performed with the activation deficit form of the
algorithm (4) is reported in (Rohwer, 1989b). Some success was attained, but
greater progress was made after changing to a quartic output deficit error function
with temporal weighting of errors:

Equa.rtic =1 Z (1.0 + at){yse — Yae }*. (13)
(it)ET

Here a is a small positive constant. The quartic function is dominated by the terms
with the greatest error. This combats a tendency to fail on a few infrequently seen
state transitions in order to gain unneeded accuracy on a large number of similar,
low-error state transitions. The temporal weighting encourages the algorithm to
focus first on late-time errors, and then work back in time. In some cases this
helped with local minimum difficulties. A difficulty with convergence to chaotic
attractors reported in (Rohwer, 1989b) appears to have mysteriously disappeared
with the adoption of this error measure.

4.1 MINIMIZATION ALGORITHM

Further progress was made by altering the minimization algorithm. Originally the
conjugate gradient algorithm (Press, 1988) was used, with a linesearch algorithm
from Fletcher (Fletcher, 1980). The new algorithm might be called “curvature
avoidance”. The change in the gradient with each linesearch is used to update
a moving average estimate of the absolute value of the diagonal components of
the Hessian. The linesearch direction is taken to be the component-by-component
quotient of the gradient with these curvature averages. Were it not for the absolute
values, this would be an unusual way of estimating the conjugate gradient. The
absolute values are used to discourage exploration of directions which show any
hint of being highly curved. The philosophy is that by exploring low-curvature
directions first, narrow canyons are entered only when necessary.

4.2 SIMULATIONS

Several simulations have been done using fully connected networks. Figure 1 plots
the node outputs of a network trained to switch between different limit cycles under
input control. There are two input nodes, one target node, and 2 hidden nodes,
as indicated in the left margin. Time proceeds from left to right. The oscillation












