
638 Zipser

Subgrouping Reduces Complexity and Speeds Up
Learning in Recurrent Networks

1 INTRODUCTION

David Zipser
Department of Cognitive Science

University of California, San Diego
La Jolla, CA 92093

Recurrent nets are more powerful than feedforward nets because they allow simulation of
dynamical systems. Everything from sine wave generators through computers to the brain are
potential candidates, but to use recurrent nets to emulate dynamical systems we need learning
algorithms to program them. Here I describe a new twist on an old algorithm for recurrent nets
and compare it to its predecessors.

2 BPTT

In the beginning there was BACKPROPAGATION THROUGH TUvffi (BPTT) which was
described by Rumelhart, Williams, and Hinton (1986). The idea is to add a copy of the whole
recurrent net to the top of a growing feedforward network on each update cycle. Backpropa
gating through this stack corrects for past mistakes by adding up all the weight changes from
past times. A difficulty with this method is that the feedforward net gets very big. The obvious
solution is to truncate it at a fixed number of copies by killing an old copy every time a new
copy is added. The truncated-BPTT algorithm is illustrated in Figure 1. It works well, more
about this later.

3RTRL

It turns out that it is not necessary to keep an ever growing stack of copies of the recurrent
net as BPTT does. A fixed number of parameters can record all of past time. This is done in
the REAL TI!\.1E RECURRENT LEARNING (RTRL) algorithm of Williams and Zipser
(1989). The derivation is given elsewhere (Rumelhart, Hinton, & Williams, 1986), but a

Sub grouping Reduces Complexity 639

IN

t-l

IN IN

t - k + 2

t - k + 1

i~
I

i<
~r -!::::~

l
i;f~

Figure 1: BPTT.

640 Zipser

simple rational comes from the fact that error backpropagation is linear, which makes it
possible to collapse the whole feedforward stack ofBPTT into a few fixed size data structures.
The biggest and most time consuming to update of these is the matrix of p values whose
update rule is

P it <t + 1) = f '(Sk <t» [L Wkl P i~ <t) + c5 ik Zj <t)]
leU

ieU,jeUuI,keU

where z,,(t) represents the value of a signal, either an input or recurrent; the sets of subscriptss
are defined so that if z" is an input then k E I and if z"is a signal from a recurrently connected
unit then k E U, s" are net values; d,,, is the Kronecker delta; and w k.l is the recurrent weight
matrix. For a network with n units and w weights there are nw of these p values, and it takes
O(wn2) operations to update them. As n gets big this gets very big and is computationally un
pleasant. This unpleasantness is cured to some degree by the new variant ofRTRL described
below.

4 SUBGROUPED RTRL

The value of n in the factor wn2, which causes all the trouble for RTRL, can be reduced by
viewing a recurrent network as consisting of a set of subnetworks all connected together. A
full y recurrent network wi th n units and m inpu ts can be divided into g full y recurren t su bnets,
each with n/g units (assuming g is a factor of n). Each unit in a subnet will receive as input
the original m inputs and the activities of the n - n/ g units in the other subnets. The effect of
subgrouping is to reduce the number of p values per weight to n/g and the number of
operations to update the pto O(wn2/g2). If g is increased in proportion to n, which keeps the
size of the sub-nets constant, n2/g2 is a constant and the complexity is reduced to O(w). If all
this is confusing try Figure 2.

5 TESTING THESE ALGORITHMS

To see if the subgrouped algorithm works, I compared its performance to RTRL and BPTT
on the problem of training a Turing machine to balance parentheses. The network "sees" the
same tape as the Turing machine, and is trained to produce the same outputs. A fully recurrent
network with 12 units was the smallest that learned this task. All three algorithms learned the
task in about the same number oflearning cycles. RTRL and subgrouped RTRL succeeded
50%, and BPTT succeeded 80% of the time. Subgrouped RTRL was 10 times faster than
RTRL, whereas BPTT was 28 times faster.

References

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations
by error propagation. In D. E. Rumelhart, J. L. McClelland, & the PDP Research Group
(Eds.), Parallel distributed processing: Explorations in the microstructure of cognition. Vol.
1. Foundationa. Cambridge, MA: MIT Press.

Williams, R. J., & Zipser, D. (1989). A learning algorithm for continually running fully
recurrent neural networks. Neural Computation, 1, 270-280.

Subgrouping Reduces Complexity 641

Fully Recurrent

---t.~ ALtivity and Error

..

..

SubgrOlJ'ped

....... ::::'., Activity only

Figure 2: Suhgroupcd-RTRL

