
316 Atkeson

Using Local Models to Control Movement

Christopher G. Atkeson
Department of Brain and Cognitive Sciences

and the Artificial Intelligence Laboratory
Massachusetts Institute of Technology

NE43-771, 545 Technology Square
Cambridge, MA 02139

cga@ai.mit.edu

ABSTRACT

This paper explores the use of a model neural network for motor
learning. Steinbuch and Taylor presented neural network designs to
do nearest neighbor lookup in the early 1960s. In this paper their
nearest neighbor network is augmented with a local model network,
which fits a local model to a set of nearest neighbors. The network
design is equivalent to local regression. This network architecture
can represent smooth nonlinear functions, yet has simple training
rules with a single global optimum. The network has been used
for motor learning of a simulated arm and a simulated running
machine.

1 INTRODUCTION

A common problem in motor learning is approximating a continuous function from
samples of the function's inputs and outputs. This paper explores a neural net­
work architecture that simply remembers experiences (samples) and builds a local
model to answer any particular query (an input for which the function's output is
desired). This network design can represent smooth nonlinear functions, yet has
simple training rules with a single global optimum for building a local model in
response to a query. Our approach is to model complex continuous functions us­
ing simple local models. This approach avoids the difficult problem of finding an
appropriate structure for a global model. A key idea is to form a training set for
the local model network after a query to be answered is known. This approach

Using Local Models to Control Movement 317

allows us to include in the training set only relevant experiences (nearby samples).
The local model network, which may be a simple network architecture such as a
perceptron, forms a model of the portion of the function near the query point. This
local model is then used to predict the output of the function, given the input. The
local model network is retrained with a new training set to answer the next query.
This approach minimizes interference between old and new data, and allows the
range of generalization to depend on the density of the samples.

Steinbuch (Steinbuch 1961, Steinbuch and Piske 1963) and Taylor (Taylor 1959,
Taylor 1960) independently proposed neural network designs that used a local rep­
resentation to do nearest neighbor lookup and pointed out that this approach could
be used for control. They used a layer of hidden units to compute an inner product
of each stored vector with the input vector. A winner-take-all circuit then selected
the hidden unit with the highest activation. This type of network can find near­
est neighbors or best matches using a Euclidean distance metric (Kazmierczak and
Steinbuch 1963). In this paper their nearest neighbor lookup network (which I will
refer to as the memory network) is augmented with a local model network, which
fits a local model to a set of nearest neighbors.

The ideas behind the network design used in this paper have a long history. Ap­
proaches which represent previous experiences directly and use a similar experience
or similar experiences to form a local model are often referred to as nearest neighbor
or k-nearest neighbor approaches. Local models (often polynomials) have been used
for many years to smooth time series (Sheppard 1912, Sherriff 1920, Whittaker and
Robinson 1924, Macauley 1931) and interpolate and extrapolate from limited data.
Lancaster and Salkauskas (1986) refer to nearest neighbor approaches as "moving
least squares" and survey their use in fitting surfaces to arbitrarily spaced points.
Eubank (1988) surveys the use of nearest neighbor estimators in nonparametric
regression. Farmer and Sidorowich (1988) survey the use of nearest neighbor and
local model approaches in modeling chaotic dynamic systems.

Crain and Bhattacharyya (1967), Falconer (1971), and McLain (1974) suggested
using a weighted regression to fit a local polynomial model at each point a function
evaluation was desired. All of the available data points were used. Each data point
was weighted by a function of its distance to the desired point in the regression.
McIntyre, Pollard, and Smith (1968), Pelto, Elkins, and Boyd (1968), Legg and
Brent (1969), Palmer (1969), Walters (1969), Lodwick and Whittle (1970), Stone
(1975) and Franke and Nielson (1980) suggested fitting a polynomial surface to a set
of nearest neighbors, also using distance weighted regression. Cleveland (1979) pro­
posed using robust regression procedures to eliminate outlying or erroneous points
in the regression process. A program implementing a refined version of this ap­
proach (LOESS) is available by sending electronic mail containing the single line,
send dloess from a, to the address netlib@research.att.com (Grosse 1989). Cleve­
land, Devlin and Grosse (1988) analyze the statistical properties of the LOESS
algorithm and Cleveland and Devlin (1988) show examples of its use. Stone (1977,
1982), Devroye (1981), Cheng (1984), Li (1984), Farwig (1987), and Miiller (1987)

318 Atkeson

provide analyses of nearest neighbor approaches. Franke (1982) compares the per­
formance of nearest neighbor approaches with other methods for fitting surfaces to
data.

2 THE NETWORK ARCHITECTURE
The memory network of Steinbuch and Taylor is used to find the nearest stored
vectors to the current input vector. The memory network computes a measure of
the distance between each stored vector and the input vector in parallel, and then a
"winner take all" network selects the nearest vector (nearest neighbor). Euclidean
distance has been chosen as the distance metric, because the Euclidean distance is
invariant under rotation of the coordinates used to represent the input vector.

The memory network consists of three layers of units: input units, hidden or memory
units, and output units. The squared Euclidean distance between the input vector
(i) and a weight vector (Wk) for the connections of the input units to hidden unit
k is given by;

d2 (0)T(o) °To 20T T k = 1- Wk 1- Wk = 1 1 - 1 Wk + Wk Wk

Since the quantity iTi is the same for all hidden units, minimizing the distance
between the input vector and the weight vector for each hidden unit is equivalent
to maximizing:

iTWk -1/2wlw k

This quantity is the inner product of the input vector and the weight vector for
hidden unit k, biased by half the squared length of the weight vector.

Dynamics of the memory network neurons allow the memory network to output a
sequence of nearest neighbors. These nearest neighbors form the selected training
sequence for the local model network. Memory unit dynamics can be used to allocate
"free" memory units to new experiences, and to forget old training points when the
capacity of the memory network is fully utilized.

The local model network consists of only one layer of modifiable weights preceded by
any number of layers with fixed connections. There may be arbitrary preprocessing
of the inputs of the local model, but the local model is linear in the parameters
used to form the fit. The local model network using the LMS training algorithm
performs a linear regression of the transformed inputs against the desired outputs.
Thus, the local model network can be used to fit a linear regression model to the
selected training set. With multiplicative interactions between inputs the local
model network can be used to fit a polynomial surface (such as a quadratic) to the
selected training set. An alternative implementation of the local model network
could use a single layer of "sigma-pi" units.

This network design has simple training rules. In the memory network the weights
are simply the values of the components of input and output vectors, and the bias
for each memory unit is just half the squared length of the corresponding input
weight vector. No search for weights is necessary, since the weights are directly

Using Local Models to Control Movement 319

/

/

Figure 1: Simulated Planar Two-joint Arm

given by the data to be stored. The local model network is linear in the weights,
leading to a single optimum which can be found by linear regression or gradient
descent. Thus, convergence to the global optimum is guaranteed when forming a
local model to answer a particular query.

This network architecture was simulated using k-d tree data structures (Friedman,
Bentley, and Finkel 1977) on a standard serial computer and also using parallel
search on a massively parallel computer, the Connection Machine (Hillis 1985). A
special purpose computer is being built to implement this network in real time.

3 APPLICATIONS

The network has been used for motor learning of a simulated arm and a simulated
running machine. The network performed surprisingly well in these simple evalua..­
tions. The simulated arm was able to follow a desired trajectory after only a few
practice movements. Performance of the simulated running machine in following a
series of desired velocities was also improved. This paper will report only on the
arm trajectory learning.

Figure 1 shows the simulated 2-joint planar arm. The problem faced in this sim­
ulation is to learn the correct joint torques to drive the arm along the desired
trajectory (the inverse dynamics problem). In addition to the feedforward control
signal produced by the network described in this paper, a feedback controller was
also used.

Figure 2 shows several learning curves for this problem. The first point in each
of the curves shows the performance generated by the feedback controller alone.
The error measure is the RMS torque error during the movement. The highest
curve shows the performance of a nearest neighbor method without a local model.
The nearest point was used to generate the torques for the feedforward command,
which were then summed with the output from the feedback controller. The second

320 Atkeson

-E 50.0
I

Z -ct> a: 40.0
o a:
a: w
ct>
::E a:
w
=> o a:
�~� z
o ...,

o

�~� ..
�~�'�.� o

\",
o

\ I"

�\�~�
o

[;- - o€J Nearest neighbor * * Linear local model
• • Quadratic local model

\ t ••

13-'.-B- - 'i5l
" "-
". �~�
'. " 'So - -B _ -..r._ .. * �~�-�~�-�B�-�-�~� • -' . --o.

• '* ... �~�.�"� ..
0.0 �o�~�-�~�-�~�=�=�-�-�t�-�-�'�-�'�:�'�'�:�'�:�'�:�'�:�~�'�'�'�'�'�'�'�'�'�'�'�'�'�-�'�'�-�'�'�'�'�-�-�t�'�'�'�'�'�-�'�'�

Movement

Figure 2: Learning curves from 3 different network designs on the two joint arm
trajectory learning problem.

curve shows the performance using a linear local model. The third curve shows
the performance using a quadratic local model. Adding the local model network
greatly speeds up learning. The network with the quadratic local model learned
more quickly than the one with the local linear model.

4 WHY DOES IT WORK?
In this learning paradigm the feedback controller serves as the teacher, or source of
new data for the network. If the feedback controller is of poor quality, the nearest
neighbor function approximation method tends to get "stuck" with a non-zero error
level. The use of a local model seems to eliminate this stuck state, and reduce the
dependence on the quality of the feedback controller.

Fast training is achieved by modularizing the network: the memory network does
not need to search for weights in order to store the samples, and local models can
be linear in the unknown parameters, leading to a single optimum which can be
found by linear regression or gradient descent.

The combination of storing all the data and only using a certain number of nearby
samples to form a local model minimizes interference between old and new data,
and allows the range of generalization to depend on the density of the samples.

There are many issues left to explore. A disadvantage of this approach is the limited
capacity of the memory network. In this version of the proposed neural network

•

