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ABSTRACT 

Sandeep Gulati 

A methodology for faster supervised learning in dynamical nonlin­
ear neural networks is presented. It exploits the concept of adjoint 
operntors to enable computation of changes in the network's re­
sponse due to perturbations in all system parameters, using the so­
lution of a single set of appropriately constructed linear equations. 
The lower bound on speedup per learning iteration over conven­
tional methods for calculating the neuromorphic energy gradient is 
O(N2), where N is the number of neurons in the network. 

1 INTRODUCTION 

The biggest promise of artifcial neural networks as computational tools lies in the 
hope that they will enable fast processing and synthesis of complex information 
patterns. In particular, considerable efforts have recently been devoted to the for­
mulation of efficent methodologies for learning (e.g., Rumelhart et al., 1986; Pineda, 
1988; Pearlmutter, 1989; Williams and Zipser, 1989; Barhen, Gulati and Zak, 1989). 
The development of learning algorithms is generally based upon the minimization 
of a neuromorphic energy function. The fundamental requirement of such an ap­
proach is the computation of the gradient of this objective function with respect 
to the various parameters of the neural architecture, e.g., synaptic weights, neural 
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gains, etc. The paramount contribution to the often excessive cost of learning us­
ing dynamical neural networks arises from the necessity to solve, at each learning 
iteration, one set of equations for each parameter of the neural system, since those 
parameters affect both directly and indirectly the network's energy. 

In this paper we show that the concept of adjoint operators, when applied to dynam­
ical neural networks, not only yields a considerable algorithmic speedup, but also 
puts on a firm mathematical basis prior results for "recurrent" networks, the deriva­
tions of which sometimes involved much heuristic reasoning. We have already used 
adjoint operators in some of our earlier work in the fields of energy-economy mod­
eling (Alsmiller and Barhen, 1984) and nuclear reactor thermal hydraulics (Barhen 
et al., 1982; Toomarian et al., 1987) at the Oak Ridge National Laboratory, where 
the concept flourished during the past decade (Oblow, 1977; Cacuci et al., 1980). 

In the sequel we first motivate and construct, in the most elementary fashion, a 
computational framework based on adjoint operators. We then apply our results 
to the Cohen-Grossberg-Hopfield (CGH) additive model, enhanced with terminal 
attractor (Barhen, Gulati and Zak, 1989) capabilities. We conclude by presenting 
the results of a few typical simulations. 

2 ADJOINT OPERATORS 
Consider, for the sake of simplicity, that a problem of interest is represented by the 
following system of N coupled nonlinear equations 

rp( u, p) o (2.1) 

where rp denotes a nonlinear operator1 . Let u and p represent the N-vector of 
dependent state variables and the M-vector of system parameters, respectively. We 
will assume that generally M » N and that elements of p are, in principle, inde­
pendent. Furthermore, we will also assume that, for a specific choice of parameters, 
a unique solution of Eq. (2.1) exists. Hence, u is an implicit function of p. A 
system "response", R, represents any result of the calculations that is of interest. 
Specifically 

R = R(u,p) (2.2) 

i.e., R is a known nonlinear function of p and u and may be calculated from Eq. (2.2) 
when the solution u in Eq. (2.1) has been obtained for a given p. The problem of 
interest is to compute the "sensitivities" of R, i.e., the derivatives of R with respect 
to parameters PI" 1L = 1"", M. By definition 

oR oR au -+-.-
OPI' au OPI' 

(2.3) 

1 If differential operators appear in Eq. (2.1), then a corresponding set of boundary and/or 
initial conditions to specify the domain of cp must also be provided. In general an inhomogeneous 
"source" term can also be present. The learning model discussed in this paper focuses on the 
adiabatic approximation only. Nonadiabatic learning algorithms, wherein the response is defined 
as a functional, will be discussed in a forthcoming article. 
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Since the response R is known analytically, the computation of oR/oPIS and oR/au 
is straightforward. The quantity that needs to be determined is the vector ou/ oPw 
Differentiating the state equations (2.1), we obtain a set of equations to be referred 
to as "forward" sensitivity equations 

(2.4) 

To simplify the notations, we are omitting the "transposed" sign and denoting the 
N by N forward sensitivity matrix ocp/ou by A, the N-vector oU/OPIS by I-'ij and 
the "source" N-vector -ocp/ OPIS by ISS. Thus 

(2.5) 

Since the source term in Eq. (2.5) explicitly depends on ft, computing dR/dPI-" 
requires solving the above system of N algebraic equations for each parameter Pw 
This difficulty is circumvented by introd ucing adjoint operators. Let A· denote the 
formal adjoint2 of the operator A. The adjoint sensitivity equations can then be 
expressed as 

A. I-' ij. IS -. S . (2.6) 

By definition, for algebraic operators 

Since Eq. (2.3), can be rewritten as 

dR oR oR 1'- (2.8) 
dpl-' OPIS 

+ au q, 

if we identify 
oR 

I-' s. -* (2.9) - s 
au 

we observe that the source term for the adjoint equations is independent of the 
specific parameter PI-" Hence, the solution of a single set of adjoint equations will 
provide all the information required to compute the gradient of R with respect to all 
parameters. To underscore that fact we shall denote I-'ij* as ii. Thus 

(2.10) 

We will now apply this computational framework to a CGH network enha.nced with 
terminal attractor dynamics. The model developed in the sequel differs from our 

2 Adjoint operators can only be considered for densely defined linear operators on Banach spaces 
(see e.g., Cacuci, 1980). For the neural application under consideration we will limit ourselves to 
real Hilbert spaces. Such spaces are self-dual. Furthermore, the domain of an adjoint operator is 
detennined by selecting appropriate adjoint boundary conditions l . The associated bilinear form 
evaluated on the domain boundary must thus be also generally included. 
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earlier formulations (Barhen, Gulati and Zak, 1989; Barhen, Zak and Gulati, 1989) 
in avoiding the use of constraints in the neuromorphic energy function, thereby 
eliminating the need for differential equations to evolve the concomitant Lagrange 
multipliers. Also, the usual activation dynamics is transformed into a set of equiv­
alent equations which exhibit more "congenial" numerical properties, such as "con­
traction" . 

3 APPLICATIONS TO NEURAL LEARNING 

We formalize a neural network as an adaptive dynamical system whose temporal 
evolution is governed by the following set of coupled nonlinear differential equations 

2:= Wnm Tnm g-y(zm) + kIn 
m 

(3.1) 

where Zn represents the mean soma potential of the nth neuron and Tnm denotes the 
synaptic coupling from the m-th to the n-th neuron. The weighting factor Wnm 
enforces topological considerations. The constant Kn chara.cterizes the decay of neu­
ron activity. The sigmoidal function g-y(.) modulates the neural response, with gain 
given by 1m; typically, g-y(z) = tanh(fz). The "source" term k In, which includes 
dimensional considerations, encodes contribution in terms of attractor coordinates 
of the k-th training sample via the following expression 

if n E Sx 
if n E SH U Sy 

(3.2) 

The topographic input, output and hidden network partitions Sx, Sy and SH are 
architectural requirements related to the encoding of ma.pping-type problems for 
which a number of possibilities exist (Barhen, Gulati and Zak, 1989; Barhen, Zak 
and Gulati, 1989). In previous articles (ibid; Zak, 1989) we have demonstrated that 
in general, for f3 = (2i + 1)-1 and i a strictly positive integer, such attractors have 
infinite local stability and provide opportunity for learning in real-time. Typically, 
f3 can be set to 1/3. Assuming an adiabatic framework, the fixed point equations 
at equilibrium, i.e., as zn --+ 0, yield 

Kn -l(k-) - g Un = 
In 

~ T. k - kI-~ Wnm nrn Urn + n (3.3) 
m 

where Un = g-y(zn) represents the neura.l response. The superscript"" denotes 
quantities evaluated at steady state. Operational network dynamics is then given 
by 

Un + Un = g-y [ In 2:= Wnm T,lm Urn + In kIn 1 (3.4) 
Kn m Kn 

To proceed formally with the development of a supervised learning algorithm, we 
consider an approach based upon the minimization of a constrained "neuromorphic" 
energy function E given by the following expression 

E(u,p) = ~ 2:= 2:= [ku n - kan ]2 V n E Sx U Sy (3.5) 
k n 



502 Barben, Toomarian and Gulati 

We relate adjoint theory to neural learning by identifying the neuromorphic energy 
function, E in Eq. (3.5), with the system response R. Also, let p denote the following 
system parameters: 

The proposed objective function enforces convergence of every neuron in Sx and 
Sy to attractor coordinates corresponding to the components in the input-output 
training patterns, thereby prompting the network to learn the embedded invari­
ances. Lyapunov stability requires an energy-like function to be monotonically de­
creasing in time. Since in our model the internal dynamical parameters of interest 
are the synaptic strengths Tnm of the interconnection topology, the characteristic 
decay constants Kn and the gain parameters In this implies that 

E = '"""' '"""' dE r.. '"""' dE. '"""' dE. ~ ~ ~ nm + ~ dK Kn + ~ d In 
n m nm n n n In 

< 0 (3.6) 

For each adaptive system parameter, PIA' Lyapunov stability will be satisfied by the 
following choice of equations of motion 

Examples include 

. dE 
Tnm = -TT dTnm 

dE 
PIA = -Tp 

dpIA 

,n dE 
-r. -

'Y din 

(3.7) 

dE 

where the time-scale parameters TT, T,. and T"y > O. Since E depends on PIA 
both directly and indirectly, previous methods required solution of a system of N 
equations for each parameter PIA to obtain dE/dPIA from du/dPIA. Our methodology 
(based on adjoint operators), yields all deri vati ves dE / dplA' V J1. , by solving a 
single set of N linear equations. 

The nonlinear neural operator for each training pattern k, k = 1,··· J(, at equi­
librium is given by 

" (" - -) [ 1 '"""' r." - 1 "1- 1 l(Jn U, P = 9 - ~ Wnm' nm' U m , + - n 
Kn , Kn m 

(3.8) 

where, without loss of generality we have set ,n to unity. So, in principle" Un = 
"un [T, K, r, "an,··-j. Using Eqs. (3.8), the forward sensitivity matrix can be 
computed and compactly expressed as 

{) "l(Jn 
{) ,,-Um 

[ " - 1 "A 1 {) In 
gn - Wnm Tnm + {)"_ 

Kn U m 

1 "A T. ,,~ - gn Wnm nm - fJn unm· 
Kn 

(3.9) 
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where 

if n E Sx 
ifn E SHUSy 

(3.10) 

Above, k gn represents the derivative of 9 with respect to kun, i.e., if 9 = tanh, 
then 

'g. = 1 - ['g.J2 where 'g. = g[ :. ( ~w.m T.m 'um + 'I. ) 1 (3.11) 

Recall that the formal adjoint equation is given as A· v = s· ; here 

1 k~ T. k, 
- gm Wmn mn - TJm Umn 
Km 

Using Eqs. (2.9) and (3.5), we can compute the formal adjoint source 

BE 
.ll k­
v Un 

ifn E Sx USy 
if n E SH 

(3.12) 

(3.13) 

The system of adjoint fixed-point equations can then be constructed using Eqs. 
(3.12) and (3.13), to yield: 

"'" 1 k~ T. k- "'" k , k-
~ - gm Wmn mn Vm - ~ fJm Umn Vm 
m Km m 

(3.14) 

Notice that the above coupled system, (3.14), is linear in kv. Furthermore, it 
has the same mathematical characteristics as the operational dynamics (3.4). Its 
components can be obtained as the equilibrium points, (i.e., Vi --+ 0) of the adjoint 
neural dynalnics 

m 

1 k ~ T. 
- gm Wmn mn Vm 
Km 

(3.15) 

As an implementation example, let us conclude by deriving the learning equations 
for the synaptic strengths, Tw Recall that 

dE 

dTIJ 
BE + "'" k- IJk --- L v, S 
BTIJ k 

p. = (i, j) (3.16) 

We differentiate the steady state equations (3.8) with respect to Tij , to obtain the 
forward source term, 

a k<pn 

aIij 
k~ [1"", "k-

- gn ;: ~ Wnl uin Ujl UI 
n I 

1 k~, k-
- gn Din Wnj Uj 
Kn 

(3.17) 
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Since by definition, fJE / 8Tnm = 0 , the explicit energy gradient contribution is 
obtained as 

T.. - [Wnm ~ 1.; - II: ~ II: - ] 
nm - -1"T - -- L.-, Vn 9n Urn 

"'n k 

(3.18) 

It is straightforward to obtain learning equations for In and "'n in a similar fashion. 

4 ADAPTIVE TIME-SCALES 
So far the adaptive learning rates, i.e., Tp in Eq.(3.7), have not been specified. Now 
we will show that, by an appropriate selection of these parameters the convergence 
of the corresponding dynamical systems can be considerably improved. Without 
loss of generality, we shall assume TT = T,. = T-y = T, and we shall seek T in the 
form (Barhen et aI, 1989; Zak 1989) 

(4.1) 

where \7 E denotes the vector with components \7TE, \7 -yE and \7 ,.E. It is straight­
forward to show that 

(4.2) 

as \7 E tends to zero, where X is an arbitrary positive constant. If we evaluate the 
relaxation time of the energy gradient, we find that 

l IVE'-O d! \7 E ! 
tE = 

IVElo !\7E!I-.6 

if f3 < 0 
if f3 > 0 ( 4.3) 

Thus, for f3 ~ 0 the relaxation time is infinite, while for f3 > 0 it is finite. The 
dynamical system (3.19) suffers a qualitative change for f3 > 0: it loses uniqueness 
of solution. The equilibrium point 1 \7 E 1 = 0 becomes a singular solution being 
intersected by all the transients, and the Lipschitz condition is violated, as one can 
see from 

d ( d ! \7 E !) = -X 1 \7 E 1-.6 _ -00 

d 1 \7 E 1 dt 
(4.4) 

where 1 \7 E 1 tends to zero, while f3 is strictly positive. Such infinitely stable points 
are" terminal attractors". By analogy with our previous results we choose f3 = 2/3, 
which yields 

T 
( )

-1/3 

~ ~ [\7TE ]~rn + ~ [\7-yE]~ + ~ [\7 ,.E]~ (4.5) 

The introduction of these adaptive time-scales dramatically improves the conver­
gence of the corresponding learning dynamical systems. 
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5 SIMULATIONS 

The computational framework developed in the preceding section has been ap­
plied to a number of problems that involve learning nonlinear mappings, including 
Exclusive-OR, the hyperbolic tangent and trignometric functions, e.g., sin. Some of 
these mappings (e.g., XOR) have been extensively benchmarked in the literature, 
and provide an adequate basis for illustrating the computational efficacy of our pro­
posed formulation. Figures l(a)-I(d) demonstrate the temporal profile of various 
network elements during learning of the XOR function. A six neuron feedforward 
network was used, that included self-feedback on the output unit and bias. Fig. 
l(a) shows the LMS error during the training phase. The worst-case convergence of 
the output state neuron to the presented attractor is displayed in Fig. l(b) . Notice 
the rapid convergence of the input state due to the terminal attractor effect. The 
behavior of the adaptive time-scale parameter T is depicted in Fig. 1 (c). Finally, 
Fig. l(d) shows the evolution of the energy gradient components. 

The test setup for signal processing applications, i.e., learning the sin function and 
the tanh sigmoidal nonlinearlity, included a 8-neUl'on fully connected network with 
no bias. In each case the network was trained using as little as 4 randomly sampled 
training points. Efficacy of recall was determined by presenting 100 random sam­
ples. Fig. (2) and (3b) illustrate that we were able to approximate the sin and the 
hyperbolic tangent functions using 16 and 4 pairs respectively. Fig. 3(a) demon­
strates the network performance when 4 pairs were used to learn the hyperbolic 
tangent. 

We would like to mention that since our learning methodology involves terminal 
at tractors, extreme caution must be exercised when simulating the algorithms in 
a digital computing environment. Our discussion on sensitivity of results to the 
integration schemes (Barhen, Zak and Gulati, 1989) emphasizes that explicit meth­
ods such as Euler or Runge-Kutta shall not be used, since the presence of terminal 
at tractors induces extreme stiffness. Practically, this would require an integration 
time-step of infinitesimal size, resulting in numerical round-off errors of unaccept­
able magnitude. Implicit integration techniques such as the Kaps- Rentrop scheme 
should therefore be used. 

6 CONCLUSIONS 

In this paper we have presented a theoretical framework for faster learning in dy­
namical neural networks. Central to our approach is the concept of adjoint operators 
which enables computation of network neuromorphic energy gradients with respect 
to all system parameters using the solution of a single set of lineal' equations. If 
CF and CA denote the computational costs associated with solving the forward and 
adjoint sensitivity equations (Eqs. 2.5 and 2.6), and if M denotes the number of 
parameters of interest in the network, the speedup achieved is 
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If we assume that CF ~ CA and that M = N 2 + 2N + ... , we see that the lower 
bound on speedup per learning iteration is O(N2). Finally, particular care must be 
execrcised when integrating the dynamical systems of interest, due to the extreme 
stiffness introduced by the terminal attractor constructs. 
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