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ABSTRACT 

A comparison of algorithms that minimize error functions to train the 
trajectories of recurrent networks, reveals how complexity is traded off for 
causality. These algorithms are also related to time-independent 
fonnalisms. It is suggested that causal and scalable algorithms are 
possible when the activation dynamics of adaptive neurons is fast 
compared to the behavior to be learned. Standard continuous-time 
recurrent backpropagation is used in an example. 

1 INTRODUCTION 

Training the time dependent behavior of a neural network model involves the minimization 
of a function that measures the difference between an actual trajectory and a desired 
trajectory. The standard method of accomplishing this minimization is to calculate the 
gradient of an error function with respect to the weights of the system and then to use the 
gradient in a minimization algorithm (e.g. gradient descent or conjugate gradient). 

Techniques for evaluating gradients and performing minimizations are well developed in the 
field of optimal control and system identification, but are only now being introduced to the 
neural network community. Not all algorithms that are useful or efficient in control problems 
are realizable as physical neural networks. In particular, physical neural network algorithms 
must satisfy locality, scaling and causality constraints. Locality simply is the constraint that 
one should be able to update each connection using only presynaptic and postsynaptic 
infonnation. There should be no need to use infonnation from neurons or connections that 
are not in physical contact with a given connection. Scaling, for this paper, refers to the 
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scaling law that governs the amount of computation or hardware that is required to perform 
the weight updates. For neural networks, where the number of weights can become very 
large, the amount of hardware or computation required to calculate the gradient must scale 
linearly with the number of weights. Otherwise, large networks are not possible. Finally, 
learning algorithms must be causal since physical neural networks must evolve forwards in 
time. Many algorithms for learning time-dependent behavior, although they are seductively 
elegant and computationally efficient, cannot be implemented as physical systems because 
the gradient evaluation requires time evolution in two directions. In this paper networks that 
violate the causality constraint will be referred to as unphysical. 

It is useful to understand how scalability and causality trade off in various gradient evaluation 
algorithms. In the next section three related gradient evaluation algorithms are derived and 
their scaling and causality properties are compared. The three algorithms demonstrate a 
natural progression from a causal algorithm that scales poorly to an a causal algorithm that 
scales linearly. 

The difficulties that these exact algorithms exhibit appear to be inescapable. This suggests 
that approximation schemes that do not calculate exact gradients or that exploit special 
properties of the tasks to-be-Ieamed may lead to physically realizable neural networks. The 
final section of this paper suggests an approach that could be exploited in systems where the 
time scale of the to-be-Ieamed task is much slower than the relaxation time scale of the 
adaptive neurons. 

2 ANALYSIS OF ALGORITHMS 

We will begin by reviewing the learning algorithms that apply to time-dependent recurrent 
networks. The control literature generally derives these algorithms by taking a variational 
approach (e.g. Bryson and Ho, 1975). Here we will take a somewhat unconventional 
approach and restrict oursel yes to the domain of differential equations and their solutions. To 
begin with, let us take a concrete example. Consider the neural system given by the equation 

dx· n , 
(it = X i+ ~ w I(x) + I I 

,=1 
(1) 

Where f(.) is a sigmoid shaped function (e.g. tanh(.)) and ~is an external input This system 
is a well studied neural model (e.g. Aplevich, 1968; Cowan, 1967; Hopfield, 1984; Malsburg, 
1973; Sejnowski, 1977). The goal is to find the weight matrix w that causes the states x(t) 
of the output units to follow a specified trajectory x(t). The actually trajectory depends not 
only on the weight matrix but also on the external input vector I. To find the weights one 
minimizes a measure of the difference between the actual trajectory x(t) and the desired 

trajectory ~(t). This measure is a functional of the trajectories and a function of the weights. 
It is given by f t I 

1 2 
E(w ,t I,t ) = 2 .L dt (x ,{t) - ~,{t)) (2) 

,e 0 t 
o 

where 0 is the set of output units. We shall, only for the purpose of algorithm comparison, 
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make the following assumptions: (1) That the networks are fully connected (2) That all the 
interval [tD,tr] is divided into q segments with numerical integrations performed using the 
Euler method and (3) That all the operations are performed with the same precision. This will 
allow us to easily estimate the amount of computation and memory required for each 
algorithm relative to the others. 

2.1 ALGORITHM A 

If the objective function E is differentiated with respect to w n one obtains 

aE nft! 
- =- L d t J i(t) P irit ) 
aw rs i=1 t 

where 

and where 

o 

J.= { g i(t)- x i(t) if i E 0 

'0 ififl.O 

ax · , 
Pirs=-a

Wrs 

(3a) 

(3b) 

(3c) 

To evaluate Pirs' differentiate equation (1) with respect to w n and observe that the time 
derivative and the partial derivative with respect to w n commute. The resulting equation is 

where 

and where 

dp irs ~L ( ) 
-d = ~ ij'X j Pjrs+Sir. 

t . 1 
J= 

(4a) 

(4b) 

(4c) 

The initial condition for eqn. (4a) is p(t) = O. Equations (1), (3) and (4) can be used to 
calculate the gradient for a learning rule. This is the approach taken by Williams and Zipser 
(1989) and also discussed by Pearlmutter(1988). Williams and Zipser further observe that 
one can use the instantaneous value of p(t) and J(t) to update the weights continually 
provided the weights change slowly. The computationally intensive part of this algorithm 
occurs in the integration of equation (4a). There are n3 components to p hence there are Ji3 
equations . Accordingly the amount of hardware or memory required to perform the 
calculation will scale like n3• Each of these equations requires a summation over all the 
neurons, hence the amount of computation (measured in multiply-accumulates) goes like It 
per time step, and there are q time steps, hence the total number of multiply-accumulates 
scales like n4q Clearly, the scaling properties of this approach are very poor and it cannot 
be practically applied to very large networks. 

2.2 ALGORITHM B 

Rather than numerically integrate the system of equations (4a) to obtain p(t), suppose we 
write down the formal solution. This solution is 
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11 "f' Pirs(t)='LKij(t,to)PjrsCt 0)+ 'L drKjj(t,f)Sjrs(i) 
j=1 j=1 '0 

(Sa) 

The matrix K is defined by the expression 

K (' 2' ,) = ex p(.r.. '~T L (x (T))) (5b) 

This matrix is known as the propagator or transition matrix. The expression for Pit. consists 
of a homogeneous solution and a particular solution. The choice of initial condition Pirs(to) 
= 0 leaves only the particular solution. If the particular solution is substituted back into eqn. 
(3a), one eventually obtains the following expression for the gradient 

aE 11 'f f ' 
-= - 'Lf dt d-r J;Ct)K irU ,-r)f(x s(-r)) 
aw rs j=1 '0 '0 

(6) 

To obtain this expression one must observe that s. can be expressed in terms of x , i.e. use 
In • 

eqn. (4c). This allows the summation over j to be performed trivially, thus resulting in 
eqn.(6). The familiar outer product form of backpropagation is not yet manifest in this 
expression. To uncover it, change the order of the integrations. This requires some care 
because the limits of the integration are not the same. The result is 

aE 11 f If If 
-=- 'L d-rf dt Jj(t)K irU ,-r)f(x sC-r)) 
aw rs i = 1 '0 l' 

(7) 

Inspection ofthis expression reveals that neither the summation over i nor the integration over 
't includes x.(t), thus it is useful to factor it out. Consequently equation (7) takes on the 
familiar outer product form of backpropagation 

aE If 
-= -f dt Y r(t)f(x sU)) (8) 
aw rs l' 

Where yr(t) is defined to be 
11 If 

Y r(-r) =- 'L f dt Jj(t)K irU ,-r) 
i= 1 t' 

(9) 

Equation (8), defines an expression for the gradient, provided we can calculate Yr(t) from eqn. 
(9). In principle, this can be done since the propagator K and the vector J are both completely 
determined by x(t). The computationally intensive part of this algorithm is the calculation 

of K(t, 't) for all values of t and't. The calculation requires the integration of equations of the 
form 

dK i: ,-r) - L (x U) K (t ,-r) (10) 

for q different values of't. There are n2different equations to integrate for each value of't 
Consequently there are n2q integrations to be performed where the interval from to to tf is 

divided into q intervals. The calculation of all the components ofK(t,'t), from tr to t ,scales 
like n3q2, since each integration requires n multiply-accumulates per time step and there are 
q time steps. Similarly, the memory requirements scale like n2q2. This is because K has n2 

components for each (t,'t) pair and there are q2 such pairs. 
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Equation (10) must be integrated forwards in time from t= 't to t = trand backwards in time 
from t= 't to t = to. This is because K must satisfy K( 't»'t) = 1 (the identity matrix) for all 
'to This condition follows from the definition of K eqn. (5b). Finally, we observe that 
expression (9) is the time-dependent analog of the expression used by Rohwer and Forrest 
(1987) to calculate the gradient in recurrent networks. The analogy can be made somewhat 

more explicit by writingK(t,'t) as the inverse K-l('t,t). Thus we see that y( t) can be expressed 
in terms of a matrix inverse just as in the Rohwer and Forrest algorithm. 

2.3 ALGORITHM C 

The final algorithm is familiar from continuous time optimal control and identification. The 
algorithm is usually derived by performing a variation on the functional given by eqn. (2). 
This results in a two-point boundary value problem. On the other hand, we know that y is 
given by eqn. (9). So we simply observe that this is the particular solution of the differential 
equation dy T 

- ([t= L (x (t))y +J (11) 

Where LT is the transpose of the matrix defined in eqn. (4b). To see this simply substitute 
the form for y into eqn. (11) and verify that it is indeed the solution to the equation. 

The particular solution to eqn. (11) vanishes only if y(1r) = O. In other words: to obtain yet) 
we need only integrate eqn. (11) backwards from the final condition y(t~ = O. This is just 
the algorithm introduced to the neural network community by Pearlmutter (1988). This also 
corresponds to the unfolding in time approach discussed by Rumelhart et al. (1986), provided 

that all the equations are discretized and one takes At = 1. 

The two point boundary value problem is rather straight forward to solve because the 
equation for x(t) is independent of yet). Both x(t) and yet) can be obtained with n multiply
accumulates per time step. There are q time steps from to to tfand bothx(t) and yet) have n 
components, hence the calculation of x(t) and yet) scales like 02q. The weight update 
equation also requires n2q mUltiply- accumulates. Thus the computational requirements of 
the algorithm as a whole scale like n2q The memory required also scales like n2q, since it 
is necessary to save each value of x(t) along the trajectory to compute yet). 

2.4 SCALING VS CAUSALITY 

The results of the previous sections are summarized in table 1 below. We see that we have 
a progression of tradeoffs between scaling and causality. That is, we must choose between 
a causal algorithm with exploding computational and storage requirements and an a causal 
algorithm with modest storage requirements. There is no q dependence in the memory 
requirments because the integral given in eqn. (3a) can be accumulated at each time step. 
Algorithm B has some of the worst features of both algorithms. 
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Table 1: Comparison of three algorithms 

Algorithm Memory Multiply diirection of integations 

A 
B 
C 

-accumulates 

x and p are both forward in time 
x is forward, K is forward and backward 
x is forward, y is backward in time. 

Digital hardware has no difficulties (at least over finite time intervals) with a causal 
algorithms provided a stack is available to act as a memory that can recall states in reverse 
order. To the extent that the gradient calculations are carried out on digital machines, it makes 
sense to use algorithm C because it is the most efficient. In analog VLSI however, it is 
difficult to imagine how to build a continually running network that uses an a causal 
algorithm. Algorithm A is attractive for physical implementation because it could be run 
continually and in real time (Williams and Zipser, 1989). However, its scaling properties 
preclude the possibility of building very large networks based on the algorithm. Recently, 
Zipser (1990) has suggested that a divide and conquer approach may reduce the 
computational and spatial complexity of the algorithm. This approach, although promising, 
does not always work and there is as yet no convergence proof. How then, is it possible to 
learn trajectories using local, scalable and causal algorithms? In the next section a possible 
avenue of attack is suggested. 

3 EXPLOITING DISPARATE TIME SCALES 

I assert that for some classes of problems there are scalable and causal algorithms that 
approximate the gradient and that these algorithms can be found by exploiting the disparity 
in time scales found in these classes of problems. In particular, I assert that when the time 
scale of the adaptive units is fast compared to the time scale of the behavior to be learned, it 
is possible to find scalable and causal adaptive algorithms. A general formalism for doing 
this will not be presented here, instead a simple, perhaps artificial, example will be presented. 
This example minimizes an error function for a time dependent problem. 

It is likely that trajectory generation in motor control problems are of this type. The 
characteristic time scales of the trajectories that need to be generated are determined by 
inertia and friction. These mechanical time scales are considerably longer than the electronic 
time scales that occur in VLSI. Thus it seems that for robotic problems, there may be no need 
to use the completely general algorithms discussed in section 2. Instead, algorithms that take 
advantage of the disparity between the mechanical and the electronic time scales are likely 
to be more useful for learning to generate trajectories. 

he task is to map from a periodic input I(t) to a periodic output ~(t). The basic idea is to use 
the continuous-time recurrent-backpropagation approach with slowly varying time-
dependent inputs rather than with static inputs. The learning is done in real-time and in a 
continuous fashion. Consider a set of n "fast" neurons (i= 1, .. ,n) each of which satisfies the 
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additive activation dynamics determined by eqn (1). Assume that the initial weights are 

sufficientl y small that the dynamics of the network would be convergent if the inputs I were 
constant. The external input vector ~ is applied to the network through the vector I. It has 
been previously shown (pineda, 1988) that the ij-th component of the gradient ofE is equal 
to yfjf(xf) where Xfj is the steady state solution of eqn. (1) and where yfjis a component of 
the steady state solution of 

dy T f 
-= L (x )y +1 
dt 

(12) 

where the components ofLT are given by eqn. (4.b). Note that the relative sign between 
equations (11) and (12) is what enables this algorithm to be causal. Now suppose that instead 

of a fixed input vector I, we use a slowly varying input I(t/'t ) where't is the characteristic 
time scale over which the input changes significantly. If w~ take as lite gradient descent 
algorithm, the dynamics defined by 

dw rs (13) 
't'w([t=Y i(t)X /t) 

where't .. is the time constant that defines the (slow) time scale over which w changes and 
where Xj is the instantaneous solution of eqn. (1) and Yj is the instantaneous solution of 
eqn.(12) . Then in the adiabatic limit the Cartesian product yl(x) in eqn. (13) approximates 
the negative gradient of the objective function E, that is 

(14) 

This approach can map one continuous trajectory into another continuous trajectory, 
provided the trajectories change slowly enough. Furthermore, learning occurs causally and 
scalably. There is no memory in the model, i.e. the output of the adaptive neurons depends 
only on their input and not on their internal state. Thus, this network can never learn to 
perform tasks that require memory unless the learning algorithm is modified to learn the 
appropriate transitions. This is the major drawback of the adiabatic approach. Some state 
information can be incorporated into this model by using recurrent connections - in which 
case the network can have multiple basins and the final state will depend on the initial state 
of the net as well as on the inputs, but this will not be pursued here. 

Simple simulations were performed to verify that the approach did indeed perform gradient 
descent. One simulation is presented here for the benefit of investigators who may wish to 
verify the results. A feedforward network topology consisting of two input units, five hidden 
units and two output units was used for the adaptive network. Units were numbered 
sequentially, 1 through 9, beginning with the input layer and ending in the output layer. Time 
dependent external inputs for the two input neurons were generated with time dependence 

II = sin(27tt) and ~ = cos(2m). The targets for the output neurons were ~ = R sin(27tt) and 

~9 =R cos(2m) where R = 1.0 + 0.lsin(6m). All the equations were simultaneously integrated 
using 4th order Runge-Kutta with a time step of 0.1. A relaxation time scale was introduced 
into the forward and backward propagation equations by multiplying the time derivatives in 

eqns. (1) and (12) by't" and 'tyrespectively. These time scales were set to't" ='ty= 0.5. The 

adaptive time scale of the weights was 't .. = 1.0. The error in the network was initially, E = 
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10 and the integration was cut off when the error reached a plateau at E = 0.12. The learning 
curve is shown in Fig. 1. The trained trajectory did not exactly reach the desired solution. In 
particular the network did not learn the odd order hannonic that modulates R. By way of 
comparison, a conventional backpropagation approach that calculated a cumulative gradient 
over the trajectory and used conjugate gradient for the descent, was able to converge to the 
global minimum. 
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Figure 1: Learning curve. One time unit corresponds to a single oscillation 

4 SUMMARY 

The key points of this paper are: 1) Exact minimization algorithms for learning time
dependent behavior either scale poorl y or else violate causality and 2) Approximate gradient 
calculations will likely lead to causal and scalable learning algorithms. The adiabatic 
approach should be useful for learning to generate trajectories of the kind encountered when 
learning motor skills. 
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