
710 Pineda

Time DependentAdaptive Neural Networks

Fernando J. Pineda

Center for Microelectronics Technology
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109

ABSTRACT

A comparison of algorithms that minimize error functions to train the
trajectories of recurrent networks, reveals how complexity is traded off for
causality. These algorithms are also related to time-independent
fonnalisms. It is suggested that causal and scalable algorithms are
possible when the activation dynamics of adaptive neurons is fast
compared to the behavior to be learned. Standard continuous-time
recurrent backpropagation is used in an example.

1 INTRODUCTION

Training the time dependent behavior of a neural network model involves the minimization
of a function that measures the difference between an actual trajectory and a desired
trajectory. The standard method of accomplishing this minimization is to calculate the
gradient of an error function with respect to the weights of the system and then to use the
gradient in a minimization algorithm (e.g. gradient descent or conjugate gradient).

Techniques for evaluating gradients and performing minimizations are well developed in the
field of optimal control and system identification, but are only now being introduced to the
neural network community. Not all algorithms that are useful or efficient in control problems
are realizable as physical neural networks. In particular, physical neural network algorithms
must satisfy locality, scaling and causality constraints. Locality simply is the constraint that
one should be able to update each connection using only presynaptic and postsynaptic
infonnation. There should be no need to use infonnation from neurons or connections that
are not in physical contact with a given connection. Scaling, for this paper, refers to the

Time Dependent Adaptive Neural Networks 711

scaling law that governs the amount of computation or hardware that is required to perform
the weight updates. For neural networks, where the number of weights can become very
large, the amount of hardware or computation required to calculate the gradient must scale
linearly with the number of weights. Otherwise, large networks are not possible. Finally,
learning algorithms must be causal since physical neural networks must evolve forwards in
time. Many algorithms for learning time-dependent behavior, although they are seductively
elegant and computationally efficient, cannot be implemented as physical systems because
the gradient evaluation requires time evolution in two directions. In this paper networks that
violate the causality constraint will be referred to as unphysical.

It is useful to understand how scalability and causality trade off in various gradient evaluation
algorithms. In the next section three related gradient evaluation algorithms are derived and
their scaling and causality properties are compared. The three algorithms demonstrate a
natural progression from a causal algorithm that scales poorly to an a causal algorithm that
scales linearly.

The difficulties that these exact algorithms exhibit appear to be inescapable. This suggests
that approximation schemes that do not calculate exact gradients or that exploit special
properties of the tasks to-be-Ieamed may lead to physically realizable neural networks. The
final section of this paper suggests an approach that could be exploited in systems where the
time scale of the to-be-Ieamed task is much slower than the relaxation time scale of the
adaptive neurons.

2 ANALYSIS OF ALGORITHMS

We will begin by reviewing the learning algorithms that apply to time-dependent recurrent
networks. The control literature generally derives these algorithms by taking a variational
approach (e.g. Bryson and Ho, 1975). Here we will take a somewhat unconventional
approach and restrict oursel yes to the domain of differential equations and their solutions. To
begin with, let us take a concrete example. Consider the neural system given by the equation

dx· n ,
(it = X i+ ~ w I(x) + I I

,=1
(1)

Where f(.) is a sigmoid shaped function (e.g. tanh(.)) and ~is an external input This system
is a well studied neural model (e.g. Aplevich, 1968; Cowan, 1967; Hopfield, 1984; Malsburg,
1973; Sejnowski, 1977). The goal is to find the weight matrix w that causes the states x(t)
of the output units to follow a specified trajectory x(t). The actually trajectory depends not
only on the weight matrix but also on the external input vector I. To find the weights one
minimizes a measure of the difference between the actual trajectory x(t) and the desired

trajectory ~(t). This measure is a functional of the trajectories and a function of the weights.
It is given by f t I

1 2
E(w ,t I,t) = 2 .L dt (x ,{t) - ~,{t)) (2)

,e 0 t
o

where 0 is the set of output units. We shall, only for the purpose of algorithm comparison,

712 Pineda

make the following assumptions: (1) That the networks are fully connected (2) That all the
interval [tD,tr] is divided into q segments with numerical integrations performed using the
Euler method and (3) That all the operations are performed with the same precision. This will
allow us to easily estimate the amount of computation and memory required for each
algorithm relative to the others.

2.1 ALGORITHM A

If the objective function E is differentiated with respect to w n one obtains

aE nft!
- =- L d t J i(t) P irit)
aw rs i=1 t

where

and where

o

J.= { g i(t)- x i(t) if i E 0

'0 ififl.O

ax · ,
Pirs=-a

Wrs

(3a)

(3b)

(3c)

To evaluate Pirs' differentiate equation (1) with respect to w n and observe that the time
derivative and the partial derivative with respect to w n commute. The resulting equation is

where

and where

dp irs ~L ()
-d = ~ ij'X j Pjrs+Sir.

t . 1
J=

(4a)

(4b)

(4c)

The initial condition for eqn. (4a) is p(t) = O. Equations (1), (3) and (4) can be used to
calculate the gradient for a learning rule. This is the approach taken by Williams and Zipser
(1989) and also discussed by Pearlmutter(1988). Williams and Zipser further observe that
one can use the instantaneous value of p(t) and J(t) to update the weights continually
provided the weights change slowly. The computationally intensive part of this algorithm
occurs in the integration of equation (4a). There are n3 components to p hence there are Ji3
equations . Accordingly the amount of hardware or memory required to perform the
calculation will scale like n3• Each of these equations requires a summation over all the
neurons, hence the amount of computation (measured in multiply-accumulates) goes like It
per time step, and there are q time steps, hence the total number of multiply-accumulates
scales like n4q Clearly, the scaling properties of this approach are very poor and it cannot
be practically applied to very large networks.

2.2 ALGORITHM B

Rather than numerically integrate the system of equations (4a) to obtain p(t), suppose we
write down the formal solution. This solution is

Time Dependent Adaptive Neural Networks 713

11 "f' Pirs(t)='LKij(t,to)PjrsCt 0)+ 'L drKjj(t,f)Sjrs(i)
j=1 j=1 '0

(Sa)

The matrix K is defined by the expression

K (' 2' ,) = ex p(.r.. '~T L (x (T))) (5b)

This matrix is known as the propagator or transition matrix. The expression for Pit. consists
of a homogeneous solution and a particular solution. The choice of initial condition Pirs(to)
= 0 leaves only the particular solution. If the particular solution is substituted back into eqn.
(3a), one eventually obtains the following expression for the gradient

aE 11 'f f '
-= - 'Lf dt d-r J;Ct)K irU ,-r)f(x s(-r))
aw rs j=1 '0 '0

(6)

To obtain this expression one must observe that s. can be expressed in terms of x , i.e. use
In •

eqn. (4c). This allows the summation over j to be performed trivially, thus resulting in
eqn.(6). The familiar outer product form of backpropagation is not yet manifest in this
expression. To uncover it, change the order of the integrations. This requires some care
because the limits of the integration are not the same. The result is

aE 11 f If If
-=- 'L d-rf dt Jj(t)K irU ,-r)f(x sC-r))
aw rs i = 1 '0 l'

(7)

Inspection ofthis expression reveals that neither the summation over i nor the integration over
't includes x.(t), thus it is useful to factor it out. Consequently equation (7) takes on the
familiar outer product form of backpropagation

aE If
-= -f dt Y r(t)f(x sU)) (8)
aw rs l'

Where yr(t) is defined to be
11 If

Y r(-r) =- 'L f dt Jj(t)K irU ,-r)
i= 1 t'

(9)

Equation (8), defines an expression for the gradient, provided we can calculate Yr(t) from eqn.
(9). In principle, this can be done since the propagator K and the vector J are both completely
determined by x(t). The computationally intensive part of this algorithm is the calculation

of K(t, 't) for all values of t and't. The calculation requires the integration of equations of the
form

dK i: ,-r) - L (x U) K (t ,-r) (10)

for q different values of't. There are n2different equations to integrate for each value of't
Consequently there are n2q integrations to be performed where the interval from to to tf is

divided into q intervals. The calculation of all the components ofK(t,'t), from tr to t ,scales
like n3q2, since each integration requires n multiply-accumulates per time step and there are
q time steps. Similarly, the memory requirements scale like n2q2. This is because K has n2

components for each (t,'t) pair and there are q2 such pairs.

714 Pineda

Equation (10) must be integrated forwards in time from t= 't to t = trand backwards in time
from t= 't to t = to. This is because K must satisfy K('t»'t) = 1 (the identity matrix) for all
'to This condition follows from the definition of K eqn. (5b). Finally, we observe that
expression (9) is the time-dependent analog of the expression used by Rohwer and Forrest
(1987) to calculate the gradient in recurrent networks. The analogy can be made somewhat

more explicit by writingK(t,'t) as the inverse K-l('t,t). Thus we see that y(t) can be expressed
in terms of a matrix inverse just as in the Rohwer and Forrest algorithm.

2.3 ALGORITHM C

The final algorithm is familiar from continuous time optimal control and identification. The
algorithm is usually derived by performing a variation on the functional given by eqn. (2).
This results in a two-point boundary value problem. On the other hand, we know that y is
given by eqn. (9). So we simply observe that this is the particular solution of the differential
equation dy T

- ([t= L (x (t))y +J (11)

Where LT is the transpose of the matrix defined in eqn. (4b). To see this simply substitute
the form for y into eqn. (11) and verify that it is indeed the solution to the equation.

The particular solution to eqn. (11) vanishes only if y(1r) = O. In other words: to obtain yet)
we need only integrate eqn. (11) backwards from the final condition y(t~ = O. This is just
the algorithm introduced to the neural network community by Pearlmutter (1988). This also
corresponds to the unfolding in time approach discussed by Rumelhart et al. (1986), provided

that all the equations are discretized and one takes At = 1.

The two point boundary value problem is rather straight forward to solve because the
equation for x(t) is independent of yet). Both x(t) and yet) can be obtained with n multiply
accumulates per time step. There are q time steps from to to tfand bothx(t) and yet) have n
components, hence the calculation of x(t) and yet) scales like 02q. The weight update
equation also requires n2q mUltiply- accumulates. Thus the computational requirements of
the algorithm as a whole scale like n2q The memory required also scales like n2q, since it
is necessary to save each value of x(t) along the trajectory to compute yet).

2.4 SCALING VS CAUSALITY

The results of the previous sections are summarized in table 1 below. We see that we have
a progression of tradeoffs between scaling and causality. That is, we must choose between
a causal algorithm with exploding computational and storage requirements and an a causal
algorithm with modest storage requirements. There is no q dependence in the memory
requirments because the integral given in eqn. (3a) can be accumulated at each time step.
Algorithm B has some of the worst features of both algorithms.

Time Dependent Adaptive Neural Networks 715

Table 1: Comparison of three algorithms

Algorithm Memory Multiply diirection of integations

A
B
C

-accumulates

x and p are both forward in time
x is forward, K is forward and backward
x is forward, y is backward in time.

Digital hardware has no difficulties (at least over finite time intervals) with a causal
algorithms provided a stack is available to act as a memory that can recall states in reverse
order. To the extent that the gradient calculations are carried out on digital machines, it makes
sense to use algorithm C because it is the most efficient. In analog VLSI however, it is
difficult to imagine how to build a continually running network that uses an a causal
algorithm. Algorithm A is attractive for physical implementation because it could be run
continually and in real time (Williams and Zipser, 1989). However, its scaling properties
preclude the possibility of building very large networks based on the algorithm. Recently,
Zipser (1990) has suggested that a divide and conquer approach may reduce the
computational and spatial complexity of the algorithm. This approach, although promising,
does not always work and there is as yet no convergence proof. How then, is it possible to
learn trajectories using local, scalable and causal algorithms? In the next section a possible
avenue of attack is suggested.

3 EXPLOITING DISPARATE TIME SCALES

I assert that for some classes of problems there are scalable and causal algorithms that
approximate the gradient and that these algorithms can be found by exploiting the disparity
in time scales found in these classes of problems. In particular, I assert that when the time
scale of the adaptive units is fast compared to the time scale of the behavior to be learned, it
is possible to find scalable and causal adaptive algorithms. A general formalism for doing
this will not be presented here, instead a simple, perhaps artificial, example will be presented.
This example minimizes an error function for a time dependent problem.

It is likely that trajectory generation in motor control problems are of this type. The
characteristic time scales of the trajectories that need to be generated are determined by
inertia and friction. These mechanical time scales are considerably longer than the electronic
time scales that occur in VLSI. Thus it seems that for robotic problems, there may be no need
to use the completely general algorithms discussed in section 2. Instead, algorithms that take
advantage of the disparity between the mechanical and the electronic time scales are likely
to be more useful for learning to generate trajectories.

he task is to map from a periodic input I(t) to a periodic output ~(t). The basic idea is to use
the continuous-time recurrent-backpropagation approach with slowly varying time-
dependent inputs rather than with static inputs. The learning is done in real-time and in a
continuous fashion. Consider a set of n "fast" neurons (i= 1, .. ,n) each of which satisfies the

716 Pineda

additive activation dynamics determined by eqn (1). Assume that the initial weights are

sufficientl y small that the dynamics of the network would be convergent if the inputs I were
constant. The external input vector ~ is applied to the network through the vector I. It has
been previously shown (pineda, 1988) that the ij-th component of the gradient ofE is equal
to yfjf(xf) where Xfj is the steady state solution of eqn. (1) and where yfjis a component of
the steady state solution of

dy T f
-= L (x)y +1
dt

(12)

where the components ofLT are given by eqn. (4.b). Note that the relative sign between
equations (11) and (12) is what enables this algorithm to be causal. Now suppose that instead

of a fixed input vector I, we use a slowly varying input I(t/'t) where't is the characteristic
time scale over which the input changes significantly. If w~ take as lite gradient descent
algorithm, the dynamics defined by

dw rs (13)
't'w([t=Y i(t)X /t)

where't .. is the time constant that defines the (slow) time scale over which w changes and
where Xj is the instantaneous solution of eqn. (1) and Yj is the instantaneous solution of
eqn.(12) . Then in the adiabatic limit the Cartesian product yl(x) in eqn. (13) approximates
the negative gradient of the objective function E, that is

(14)

This approach can map one continuous trajectory into another continuous trajectory,
provided the trajectories change slowly enough. Furthermore, learning occurs causally and
scalably. There is no memory in the model, i.e. the output of the adaptive neurons depends
only on their input and not on their internal state. Thus, this network can never learn to
perform tasks that require memory unless the learning algorithm is modified to learn the
appropriate transitions. This is the major drawback of the adiabatic approach. Some state
information can be incorporated into this model by using recurrent connections - in which
case the network can have multiple basins and the final state will depend on the initial state
of the net as well as on the inputs, but this will not be pursued here.

Simple simulations were performed to verify that the approach did indeed perform gradient
descent. One simulation is presented here for the benefit of investigators who may wish to
verify the results. A feedforward network topology consisting of two input units, five hidden
units and two output units was used for the adaptive network. Units were numbered
sequentially, 1 through 9, beginning with the input layer and ending in the output layer. Time
dependent external inputs for the two input neurons were generated with time dependence

II = sin(27tt) and ~ = cos(2m). The targets for the output neurons were ~ = R sin(27tt) and

~9 =R cos(2m) where R = 1.0 + 0.lsin(6m). All the equations were simultaneously integrated
using 4th order Runge-Kutta with a time step of 0.1. A relaxation time scale was introduced
into the forward and backward propagation equations by multiplying the time derivatives in

eqns. (1) and (12) by't" and 'tyrespectively. These time scales were set to't" ='ty= 0.5. The

adaptive time scale of the weights was 't .. = 1.0. The error in the network was initially, E =

Time Dependent Adaptive Neural Networks 717

10 and the integration was cut off when the error reached a plateau at E = 0.12. The learning
curve is shown in Fig. 1. The trained trajectory did not exactly reach the desired solution. In
particular the network did not learn the odd order hannonic that modulates R. By way of
comparison, a conventional backpropagation approach that calculated a cumulative gradient
over the trajectory and used conjugate gradient for the descent, was able to converge to the
global minimum.

12,---------------------------------~

10-'
III
III

8 - m
m

6 -

4-

2 -.

m
m
m
m

ED
m

O+-__ ~---~~··~··E··~·.B .. ~ .. B .. B . . ~·.m··D·~···~~
I I I

o 10 20 30 40 50
Time

Figure 1: Learning curve. One time unit corresponds to a single oscillation

4 SUMMARY

The key points of this paper are: 1) Exact minimization algorithms for learning time
dependent behavior either scale poorl y or else violate causality and 2) Approximate gradient
calculations will likely lead to causal and scalable learning algorithms. The adiabatic
approach should be useful for learning to generate trajectories of the kind encountered when
learning motor skills.

References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer,
or otherwise, does not constitute or imply any endorsement by the U oited States Government or the Jet Propulsion

Laboratory, California Institute of Technology. The work described in this paper was carried out at the
Center for Space Microelectonrics Technology, Jet Propulsion Laboratory, California Institute of
Technology. Support for the work came from the Air Force Office of Scientific Research through an
agreement with the National Aeronautics and Space Administration (AFOSR-ISSA-90-0027).

REFERENCES

Aplevich,J.D. (1968). Models of certain nonlinear systems. InE.R.Caianiello(Ed.),Neural
Networks, (pp. 110-115), Berlin: Springer Verlag.

Bryson, A. E. and Ho, Y. (1975). Applied Optimal Control: Optimization. Estimation. and

718 Pineda

Control. New York: Hemisphere Publishing Co.

Cowan, J. D. (1967). A mathematical theory of central nervous activity. Unpublished
dissertation, Imperial College, University of London.

Hopfield, J. J. (1984). Neurons with graded response have collective computational
properties like those of two-state neurons. Proc. Nat. Acad. Sci. USA, Bio., .. 8.l. 3088-3092.

Malsburg, C. van der (1973). Self-organization of orientation sensitive cells in striate cortex,
Kybernetic, 14,85-100.

Pearlmutter, B. A. (1988), Learning state space trajectories in recurrent neural networks: A
preliminary report, (Tech. Rep. AlP-54), Department of Computer Science , Carnegie Mellon
University, Pittsburgh, PA

Pineda, F. J. (1988). Dynamics and Architecture for Neural Computation. Journal of
Complexity,~, (pp.216-245)

Rowher R, R. and Forrest, B. (1987). Training time dependence in neural networks, In M.
CaudilandC.Butler,(Eds.),ProceedingsoftheIEEEFirstAnnuallnternationalConference
on Neural Networks, ~, (pp. 701-708). San Diego, California: IEEE.

Rumelhart, D. E., Hinton, G. E., and Willaims, R.J. (1986). Learning Internal
Representations by Error Propagation. In D. E. Rumelhart and J. L. McClelland, (Eds.),
Parallel Distributed Processing, (pp. 318-362). Cambridge: M.LT. Press.

Sejnowski, T. J. (1977). Storing covariance with nonlinearly interacting neurons. Journal
of Mathematical Biology, ~,303 .. 321.

Williams, R.I. and Zipser, D. (1989). A learning algorithm for continually running
fully recurrent neural networks. Neural Computation, 1, (pp. 270-280).

Zipser, D. (1990). Subgrouping reduces complexity and speeds up learning in recurrent
networks, (this volume).

