
340 Carter, Rudolph and Nucci

Operational Fault Tolerance
of CMAC Networks

Michael J. Carter Franklin J. Rudolph Adam J. Nucci
Intelligent Structures Group

Department of Electrical and Computer Engineering
University of New Hampshire

Durham, NH 03824-3591

ABSTRACT

The performance sensitivity of Albus' CMAC network was studied for
the scenario in which faults are introduced into the adjustable weights
after training has been accomplished. It was found that fault sensitivity
was reduced with increased generalization when "loss of weight" faults
were considered, but sensitivity was increased for "saturated weight"
faults.

1 INTRODUCTION

Fault-tolerance is often cited as an inherent property of neural networks, and is thought by
many to be a natural consequence of "massively parallel" computational architectures.
Numerous anecdotal reports of fault-tolerance experiments, primarily in pattern
classification tasks, abound in the literature. However, there has been surprisingly little
rigorous investigation of the fault-tolerance properties of various network architectures in
other application areas. In this paper we investigate the fault-tolerance of the CMAC
(Cerebellar Model Arithmetic Computer) network [Albus 1975] in a systematic manner.
CMAC networks have attracted much recent attention because of their successful
application in robotic manipulator control [Ersu 1984, Miller 1986, Lane 1988]. Since
fault-tolerance is a key concern in critical control tasks, there is added impetus to study

Operational Fault Tolerance of CMAC Networks 341

this aspect of CMAC performance. In particular. we examined the effect on network
performance of faults introduced into the adjustable weight layer after training has been
accomplished in a fault-free environment The degradation of approximation error due to
faults was studied for the task of learning simple real functions of a single variable. The
influence of receptive field width and total CMAC memory size on the fault sensitivity of
the network was evaluated by means of simulation.

2 THE CMAC NETWORK ARCHITECTURE

The CMAC network shown in Figure 1 implements a form of distributed table lookup.
It consists of two parts: 1) an address generator module. and 2) a layer of adjustable
weights. The address generator is a fixed algorithmic transformation from the input space
to the space of weight addresses. This transformation has two important properties: 1)
Only a fixed number C of weights are activated in response to any particular input. and
more importantly, only these weights are adjusted during training; 2) It is locally
generalizing. in the sense that any two input points separated by Euclidean distance less
than some threshold produce activated weight subsets that are close in Hamming distance,
i.e. the two weight subsets have many weights in common. Input points that are
separated by more than the threshold distance produce non-overlapping activated weight
subsets. The first property gives rise to the extremely fast training times noted by all
CMAC investigators. The number of weights activated by any input is referred to as the
"generalization parameter". and is typically a small number ranging from 4 to 128 in
practical applications [Miller 1986]. Only the activated weights are summed to form the
response to the current input. A simple delta rule adjustment procedure is used to update
the activated weights in response to the presentation of an input-desired output exemplar
pair. Note that there is no adjustment of the address generator transformation during
learning. and indeed, there are no "weights" available for adjustment in the address
generator. It should also be noted that the hash-coded mapping is in general necessary
because there are many more resolution cells in the input space than there are unique
finite combinations of weights in the physical memory. As a result, the local
generalization property will be disturbed because some distant inputs share common
weight addresses in their activated weight subsets due to hashing collisions.

While the CMAC network readily lends itself to the task of learning and mimicking
multidimensional nonlinear transformations. the investigation of network fault-tolerance
in this setting is daunting! For reasons discussed in the next section. we opted to study
CMAC fault-tolerance for simple one-dimensional input and output spaces without the
use of the hash-coded mapping.

3 .FAULT-TOLERANCE EXPERIMENTS

We distinguish between two types of fault-tolerance in neural networks [Carter 1988]:
operational fault-tolerance and learning fault-tolerance. Operational fault-tolerance deals
with the sensitivity of network performance to faults inttoduced after learning has been

342 Carter, Rudolph and Nucci

accomplished in a fault-free environment. Learning fault-tolerance refers to the sensitivity
of network performance to faults (either permanent or transient) which are present during
training. It should be noted that the term fault-tolerance as used here applies only to
faults that represent perturbations in network parameters or topology, and does not refer
to noisy or censored input data. Indeed, we believe that the latter usage is both
inappropriate and inconsistent with conventional usage in the computer fault-tolerance
community.

3.1 EXPERIMENT DESIGN PHILOSOPHY

Since the CMAC network is widely used for learning nonlinear functions (e.g. the motor
drive voltage to joint angle transformation for a multiple degree-of-freedom robotic
manipulator), the obvious measure of network performance is function approximation
error. The sensitivity of approximation error to faults is the subject of this paper. There
are several types of faults that are of concern in the CMAC architecture. Faults that occur
in the address generator module may ultimately have the most severe impact on
approximation error since the selection of incorrect weight addresses will likely produce a
bad response. On the other hand, since the address generator is an algorithm rather than a
true network of simple computational units, the fault-tolerance of any serial processor
implementation of the algorithm will be difficult to study. For this reason we initially
elected to study the fault sensitivity of the adjustable weight layer only.

The choice of fault types and fault placement strategies for neural network fault tolerance
studies is not at all straightforward. Unlike classical fault-tolerance studies in digital
systems which use "stuck-at-zero" and "stuck-at-one" faults, neural networks which use
analog or mixed analog/digital implementations may suffer from a host of fault types. In
order to make some progress, and to study the fault tolerance of the CMAC network at
the architectural level rather than at the device level, we opted for a variation on the
"stuck-at" fault model of digital systems. Since this study was concerned only with the
adjustable weight layer, and since we assumed that weight storage is most likely to be
digital (though this will certainly change as good analog memory technologies are
developed), we considered two fault models which are admittedly severe. The first is a
"loss of weight" fault which results in the selected weight being set to zero, while the
second is a "saturated weight" fault which might correspond to the situation of a
stuck-at-one fault in the most significant bit of a single weight register.

The question of fault placement is also problematic. In the absence of a specific circuit
level implementation of the network, it is difficult to postulate a model for fault
distribution. We adopted a somewhat perverse outlook in the hope of characterizing the
network's fault tolerance under a worst-case fault placement strategy. The insight gained
will still prove to be valuable in more benign fault placement tests (e.g. random fault
placement), and in addition, if one can devise network modifications which yield good
fault-tolerance in this extreme case, there is hope of still better performance in more

Operational Fault Tolerance of CMAC Networks 343

typical instances of circuit failure. When placing "loss of weight" faults, we attacked
large magnitude weight locations fast, and continued to add more such faults to locations
ranked in descending order of weight magnitude. Likewise, when placing saturated weight
faults we attacked small magnitude weight locations first, and successive faults were
placed in locations ordered by ascending weight magnitude. Since the activated weights
are simply summed to form a response in CMAC, faults of both types create an error in
the response which is equal to the weight change in the faulted location. Hence, our
strategy was designed to produce the maximum output error for a given number of faults.
In placing faults of either type, however, we did not place two faults within a single
activated weight subset. Our strategy was thus not an absolute worst-case strategy, but
was still more stressful than a purely random fault placement strategy. Finally, we did
not mix fault types in any single experiment.

The fault tolerance experiments presented in the next section all had the same general
structure. The network under study was trained to reproduce (to a specified level of
approximation error) a real function of a single variable, y=f(x), based upon presentation
of (x,y) exemplar pairs. Faults of the types described previously were then introduced,
and the resulting degradation in approximation error was logged versus the number of
faults. Many such experiments were conducted with varying CMAC memory size and
generalization parameter while learning the same exemplar function. We considered
smoothly varying functions (sinusoids of varying spatial frequency) and discontinuous
functions (step functions) on a bounded interval.

3.2 EXPERIMENT RESULTS AND DISCUSSION

In this section we present the results of experiments in which the function to be learned is
held fixed, while the generalization parameter of the CMAC network to be tested is
varied. The total number of weights (also referred to here as memory locations) is the
same in each batch of experiments. Memory sizes of 50, 250, and 1000 were
investigated, but only the results for the case N=250 are presented here. They exemplify
the trends observed for all memory sizes.

Figure 2 shows the dependence of RMS (root mean square) approximation error on the
number of loss-of-weight faults injected for generalization parameter values C=4, 8, 16.
The task was that of reproducing a single cycle of a sinusoidal function on the input
interval. Note that approximation error was diminished with increasing generalization at
any fault severity level. For saturated weight faults, however, approximation error
incr.eased with increasing generalization! The reason for this contrasting behavior
becomes clear upon examination of Figure 3. Observe also in Figure 2 that the increase
in RMS error due to the introduction of a single fault can be as much as an order of
magnitude. This is somewhat deceptive since the scale of the error is rather small
(typically 10-3 or so), and so it may not seem of great consequence. However, as one
may note in Figure 3, the effect of a single fault is highly localized, so RMS
approximation error may be a poor choice of performance measure in selected

344 Carter, Rudolph and Nucci

applications. In particular, saturated weight faults in nominally small weight magnitude
locations create a large relative response error, and this may be devastating in real-time
control applications. Loss-of-weight faults are more benign, and their impact may be
diluted by increasing generalization. The penalty for doing so, however, is increased
sensitivity to saturated weight faults because larger regions of the network mapping are
affected by a single fault

Figure 4 displays some of the results of fault-tolerance tests with a discontinuous
exemplar function. Note the large variation in stored weight values necessary to
reproduce the step function. When a large magnitude weight needed to form the step
transition was faulted, the result was a double step (Figure 4(b» or a shifted transition
point (Figure 4(c». The extent of the fault impact was diminished with decreasing
generalization. Since pattern classification tasks are equivalent to learning a
discontinuous function over the input feature space, this finding suggests that improved
fault-tolerance in such tasks might be obtained by reducing the generalization parameter
C. This would limit the shifting of pattern class boundaries in the presence of weight
faults. Preliminary experiments, however, also showed that learning of discontinuous
exemplar functions proceeded much more slowly with small values of the generalization
parameter.

4 CONCLUSIONS AND OPEN QUESTIONS

The CMAC network is well-suited to applications that demand fast learning of unknown
multidimensional, static mappings (such as those arising in nonlinear control and signal
processing systems). The results of the preliminary investigations reported here suggest
that the fault-tolerance of conventional CMAC networks may not be as great as one
might hope on the basis of anecdotal evidence in the prior literature with other network
architectures. Network fault sensitivity does not seem to be uniform, and the location of
particularly sensitive weights is very much dependent on the exemplar function to be
le3f!led. Furthermore, the obvious fault-tolerance enhancement technique of increasing
generalization (i.e. distributing the response computation over more weight locations) has
the undesirable effect of increasing sensitivity to saturated weight faults. While the
local generalization feature of CMAC has the desirable attribute of limiting the region of
fault impact, it suggests that global approximation error measures may be misleading.
A low value of RMS error degradation may in fact mask a much more severe response
error over a small region of the mapping. Finally, one must be cautious in making
assessments of the fault-tolerance of a fixed network on the basis of tests using a single
mapping. Discontinuous exemplar functions produce stored weight distributions which
are much more fault-sensitive than those associated with smoothly varying functions, and
such functions are clearly of interest in pattern classification.

Many important open questions remain concerning the fault-tolerance properties of the
CMAC network. The effect of faults on the address generator module has yet to be
determined. Collisions in the hash-coded mapping effectively propagate weight faults to

Operational Fault Tolerance of CMAC Networks 345

remote regions of the input space, and the impact of this phenomenon on overall
fault-tolerance has not been assessed. Much more work is needed on the role that
exemplar function smoothness plays in detennining the fault-tolerance of a fIxed topology
network.

Acknowledgements

The authors would like to thank Tom Miller, Fil Glanz. Gordon Kraft. and Edgar An for
many helpful discussions on the CMAC network architecture. This work was supported
in part by an Analog Devices Career Development Professorship and by a General Electric
Foundation Young Faculty Grant awarded to MJ. Carter.

References

J.S. Albus. (1975) "A new approach to manipulator control: the Cerebellar Model
Articulation Controller (CMAC)," Trans. ASME- 1. Dynamic Syst .. Meas .. Contr. 97 ;
220-227.

MJ. Carter. (1988) "The illusion of fault-tolerance in neural networks for pattern
recognition and signal processing," Proc. Technical Session on Fault-Tolerant Integrated
Systems. Durham, NH: University of New Hampshire.

E. Ersu and J. Militzer. (1984) "Real-time implementation of an aSSOC13Uve
memory-based learning control scheme for non-linear multivariable processes," Proc. 1 st
Measurement and Control Symposium on Applications of Multivariable Systems
Techniques; 109-119.

S. Lane, D. Handelman, and J. Gelfand. (1988) "A neural network computational map
approach to reflexive motor control," Proc. IEEE Intelligent Control Conf. Arlington,
VA.

W.T. Miller. (1986) "A nonlinear learning controller for robotic manipulators," Proc.
SPIE: Intelligent Robots and Computer Vision 726; 416-423.

x

C addrc:a elo:c:liaa
IiDu

--~ ~ ..----0

y

346 Carter, Rudolph and Nucci

.. ~------------------------~
•
• w· oo
~ •

c

~4
-I _1'

•. ~~--------------.....-. •
Figure 2: Sinusoid Approximation Enor vs. Number of "Loss-of-Weight" Faults

· •

u

! U
'i. • • · · i4.1 • ---...

.... 1--.-----.......------...... ----
••

. ~
~ u • • • · ·

•

loU __

Ii -

......... -----...... -----...... ---

· •

u ,.
• u t

• zea

! u~----------~--________ --
::,.:~

.... +-----------...-• II.
-.,~ -

Figure 3: Network Response and Stored Weight Values. a) single lost weight.
generalization C=4; b) single lost weight, C=16; c) single saturated weight, C=16.

Operational Fault Tolerance of CMAC Networks 347

1.5

1.0
v
'0
:I

0.5 -
~

e
< 0.0
v .:
:s -<1.5
V
a:

neIWOrk response ~

• stOn:d weighlS

·1.0

·1.5
a 100 200

Memory Localioa

•
0.8 ..

'0
:I

~

::
« .-.. -<1.2
'" netWOrk response
~ .. 0 stored WCIg/l1S

=

·1.2
a 100 200

Memory Loatioa

2

SatUrated Fault ~

.--
~ -« a

network response

0 stOred wcighlS

·2
a 100 200

Memory Locatioa

Figure 4: Network Response and Stored Weight Values. a) no faults. transition at
location 125. C=8; b) single lost weight, C=16; c) single saturated weight, C=16.

