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ABSTRACT 

Kanerva's sparse distributed memory (SDM) is an associative-memo­
ry model based on the mathematical properties of high-dimensional 
binary address spaces. Holland's genetic algorithms are a search tech­
nique for high-dimensional spaces inspired by evolutionary processes 
of DNA. "Genetic Memory" is a hybrid of the above two systems, 
in which the memory uses a genetic algorithm to dynamically recon­
figure its physical storage locations to reflect correlations between 
the stored addresses and data. For example, when presented with 
raw weather station data, the Genetic Memory discovers specific fea­
tures in the weather data which correlate well with upcoming rain, 
and reconfigures the memory to utilize this information effectively. 
This architecture is designed to maximize the ability of the system 
to scale-up to handle real-world problems. 

INTRODUCTION 
The future success of neural networks depends on an ability to "scale-up" from 
small networks and low-dimensional toy problems to networks of thousands or mil­
lions of nodes and high-dimensional real-world problems. (The dimensionality of a 
problem refers to the number of variables needed to describe the problem domain.) 
Unless neural networks are shown to be scalable to real-world problems, they will 
likely remain restricted to a few specialized applications. 

Scaling-up adds two types of computational demands to a system. First, there is a 
linear increase in computational demand proportional to the increased number of vari­
ables. Second, there is a greater, nonlinear increase in computational demand due to 
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the number of interactions that can occur between the variables. This latter effect is 
primarily responsible for the difficulties encountered in scaling-up many systems. 
In general, it is difficult to scale-up a system unless it is specifically designed to 
function well in high-dimensional domains. 

Two systems designed to function well in high-dimensional domains are Kanerva' s 
sparse distributed memory (Kanerva, 1988) and Holland's genetic algorithms 
(Holland, 1986). I hypothesized that a hybrid of these two systems would preserve 
this ability to operate well in high-dimensional environments, and offer grater func­
tionality than either individually. I call this hybrid Genetic Memory. To test its 
capabilities, I applied it to the problem of forecasting rain from local weather data. 

Kanerva's sparse distributed memory (SDM) is an associative-memory model based 
on the mathematical properties of high-dimensional binary address spaces. It can be 
represented as a three-layer neural-network with an extremely large nwnber of 
nodes (I ,000,000+) in the middle layer. In its standard formulation, the connec­
tions between the input layer and the hidden layer (the input representation used by 
the system) are flXed, and learning is done by changing the values of the connections 
between the hidden layer and the output layer. 

Holland's genetic algorithms are a search technique for high-dimensional spaces in­
spired by evolutionary processes of DNA. Members of a set of binary strings com­
petes for the opportunity to recombine. Recombination is done by selecting two 
"successful" members of the population to be the parents. A new string is created 
by splicing together pieces of each parent. Finally, the new string is placed into the 
set, and some "unsuccessful" older string removed. 

"Genetic Memory" is a hybrid of the above two systems. In this hybrid, a genetic al­
gorithm is used to reconfigure the connections between the input layer and the hid­
den layer. The connections between the hidden layer and the output layer are 
changed using the standard method for a sparse distributed memory. The "success" 
of an input representation is determined by how well it reflects correlations be­
tween addresses and data, using my previously presented work on statistical predic­
tion (Rogers, 1988). Thus, we have two separate learning algorithms in the two lev­
els. The memory uses the genetic algorithm to dynamically reconfigure its input 
representation to better reflect correlations between collections of input variables 
and the stored data. 

I applied this Genetic Memory architecture to the problem of predicting rain given 
only local weather features such as the air pressure, the cloud cover, the month, the 
temperature, etc. The weather data contained 15 features, sampled every 4-hours 
over a 2O-year period on the Australian coast. I coded each state into a 256-bit ad­
dress, and stored at that address a single bit which denoted whether it rained in the 4 
hours following that weather state. I allowed the genetic algorithm to reconfigure 
the memory while it scanned the file of weather states. 

The success of this procedure was measured in two ways. First, once the training 
was completed, the Genetic Memory was better at predicting rain than was the stan­
dard sparse distributed memory. Second, I had access to the input representations 
discovered by the Genetic Memory and could view the specific combinations of fea­
tures that predicted rain. Thus, unlike many neural networks, the Genetic Memory 
allows the user to inspect the internal representations it discovers during training. 
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Figure 1: Structure of a Sparse Distributed Memory 

SPARSE DISTRmUTED MEMORY 

Data 
Counters 

Sparse distributed memory can be best illustrated as a variant of random-access mem­
ory (RAM). The structure of a twelve-location SDM with ten-bit addresses and 
ten-bit data is shown in figure 1. 

A memory location is a row in this figure. The location addresses are set to random 
addresses. The data counters are initialized to zero. All operations begin with ad­
dressing the memory; this entails fmding the Hamming distance between the refer­
ence address and each of the location addresses. If this distance is less than or equal 
to the Hamming radius. the select-vector entry is set to 1. and that location is 
termed selected. The ensemble of such selected locations is called the selected set. 
Selection is noted in the figure as non-gray rows. A radius is chosen so that only a 
small percentage of the memory locations are selected for a given reference address. 

When writing to the memory. all selected counters beneath elements of the input da­
ta equal to 1 are incremented. and all selected counters beneath elements of the input 
data equal to 0 are decremented. This completes a write operation. When reading 
from the memory. the selected data counters are summed columnwise into the regis­
ter swns. If the value of a sum is greater than or equal to zero. we set the corre­
sponding bit in the output data to 1; otherwise. we set the bit in the output data to 
O. (When reading. the contents of the input data are ignored.) 
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This example makes clear that a datum is distributed over the data counters of the se­
lected locations when writing. and that the datum is reconstructed during reading by 
averaging the sums of these counters. However, depending on what additional data 
were written into some of the selected locations, and depending on how these data 
correlate with the original data. the reconstruction may contain noise. 

The SDM model can also be described as a fully-connected three-layer feed-forward 
neural network. In this model. the location addresses are the weights between the 
input layer and the hidden units. and the data counters are the weights between the 
hidden units and the output layer. Note that the number of hidden-layer nodes (at 
least 1,000 and possibly up to 1,000,(00) is much larger than is commonly used for 
artificial neural networks. It is unclear how well standard algorithms. such as back­
propagation, would perform with such a large number of units in the hidden layer. 

HOLLAND'S GENETIC ALGORITHMS 
Genetic Algorithms are a search technique for high-dimensional spaces inspired by 
the evolutionary processes of DNA. The domain of a genetic algorithm is a popula­
tion of rued-length binary strings and a fitness function, which is a method for evalu­
ating the fitness of each of the members. We use this fitness function to select two 
highly-ranked members for recombination. and one lowly-ranked member for re­
placement (The selection may be done either absolutely. with the best and worst 
members always being selected. or probabilisticly. with the members being chosen 
proportional to their fitness scores.) 

The member selected as bad is removed from the population. The two members se­
lected as good are then recombined to create a new member to take its place in the 
population. In effect, the genetic algorithm is a search over a high-dimensional 
space for strings which are highly-rated by the fitness function. 

The process used to create new members of the population is called crossover. In a 
crossover. we align the two good candidates end-to-end and segment them at one or 
more crossover-points. We then create a new string by starting the transcription of 
bits at one of the parent strings, and switching the transcription to the other parent 
at the crossover-points. This new string is placed into the population. taking the 
place of the poorly-rated member. 

11 •• I'~IOllllll •••• First parent 

1101101101: 111:11".110 ... Second parent 

~ ~ ~ 
New member 

Figure 2: Crossover of two binary strings 

By running the genetic algorithm over the population many times, the population 
"evolves" towards members which are rated more fit by our fitness function. 
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Figure 3: Structure of a Genetic Memory 
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procedure are an extremely efficient method for searching a high-dimensional space. 

GENETIC MEMORY 
Genetic Memory is a hybrid of Kanerva's Sparse Distributed Memory and Holland's 
Genetic Algorithms. In this hybrid, the location addresses of the SDM are not held 
constant; rather, a Genetic Algorithm is used to move them to more advantageous 
positions in the address space. If we view SDM as a neural net, this hybrid uses a ge­
netic algorithm to change the weights in the connections between the input layer and 
the hidden unit layer, while the connections between the hidden unit layer and the 
output layer at changed using the standard method for a SDM. 

Most other work which combined neural networks and genetic algorithms kept mul­
tiple networks; the Genetic Algorithm was used to recombine the more successful 
of these networks to create new entire networks. 

In a Genetic Memory there is a single network with different algorithms changing 
the weights in different layers. Thus, a Genetic Memory incorporates the Genetic 
Algorithm directly into the operation of a single network. 

AUSTRALIAN WEATHER DATA 
The weather data was collected at a single site on the Australian coast. A sample 
was taken every 4 hours for 25 years; the me contains over 58,000 weather samples 

The file contained 15 distinct features, including year, month, day of the month, 
time of day, pressure, dry bulb temperature, wet bulb temperature, dew point, wind 
speed, wind direction, cloud cover, and whether it rained in the past four hours. 

For this work, I coded each weather sample into a 256-bit word. Each weather sam­
ple was coded into a 256-bit binary address, giving each feature a 16-bit field in that 
address. The feature values were coarse-coded into a simple thennometer-style 
code. For example, figure 4 shows the code used for month. 

PROCEDURE FOR WEATHER PREDICTION 
In the standard SDM model, the locations addresses are held constant. In a Genetic 
Memory, the location addresses are reconfigured using a Genetic Algorithm. 
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JAN: 1111111100000000 JUL: 1000000001111111 
FEB: 0111111111000000 AUG: 1100000000111111 
MAR: 0011111111100000 SEP: 1111000000011111 
APR: 0000111111110000 OCT: 1111100000001111 
MAY: 0000011111111000 NOV: 1111110000000011 
JUN: 0000001111111110 DEC: 1111111000000001 

Figure 4: 16-bit code used for month 

The fitness function used is based on my work on statistical prediction and presented 
at NIPS-88 [Rogers 1988]. This work assigns a number to each physical storage loca­
tion (a row in the figure) which is a measure of the predictive ness of that location. 
Highly-predictive locations are recombined using crossover; the newly-created loca­
tion address is given to a location which is relatively unpredictive. The data 
counter is a measure of the co"elation between the selection of a location and the 
occurrence of a given bit value. Thus, we can use the data counters to judge the fit­
ness, i.e., the predictiveness, of each memory location. 

To train the memory, we present the memory with each weather state in turn. The 
memory is not shown the data a multiple number of times. For each state, the mem­
ory is addressed with the 256-bit address which represents it. non is written to the 
memory if it does not rain in the next four hours, and "1" if it does. After the mem­
ory has seen a given number of weather samples, the Genetic Algorithm is per­
formed to replace a poorly-predictive location with a new address created from two 
predictive addresses. 

The procedure is continued until the memory has seen 50,000 weather samples, and 
has performed -5,000 genetic recombinations. 

ANAL YSIS OF RESULTS 
The initial results from the Genetic Memory procedure was conducted on a memory 
with 1,000 storage locations. The weather sample set consisted of a sequence of 
weather samples taken every 4 hours over a period of 20 years. In the sample set, it 
rained in the next 4 hours for -10% of the samples, and was dry in the next four 
hours in -90% of the samples. 

The Genetic Memory was testing by storing -50,000 weather samples. The samples 
were given to the memory in chronological order. During the course of storage, the 
memory reconfigured itself with -5,000 genetic recombinations. A Genetic Memo­
ry and a standard Sparse Distributed Memory were tested against 1,000 previously 
unseen weather samples. In initial experiments, the Genetic Memory had 50% fewer 
errors than the Sparse Distributed Memory. 

However, the Genetic Memory does not only show an improvement in performance, 
it allows the user to analyze the genetically-determined memory locations to discov­
er how the memory improved its performance. 

By studying highly-rated memory locations in the Genetic Memory, we can open the 
black box: that is, access the parameters the memory has decided are the most effec­
tive in associating the sample addresses with the sample data. This ability to access 
the parameters the system found effective has two important implications. First, 
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the parameters may offer insights into the underlying physical processes in the sys­
tem under study. Second. knowledge of how the system predicts may be vital for de­
termining the robustness and the envelope of applicability of the memory prior to 
embedding into a real-world system. 

Simply scoring the performance of a system is not enough. We must be able to 
"open the black box" to study why the system performs as it does. 

OPENING THE BLACK BOX 
When the training is completed. we can analyze the structure of memory locations 
which performed well to discover which features they found most discriminatory 
and which values of those features were preferred. For example. here is a memory 
location which was rated highly-fit for predicting rain after training: 

1101001100000011 1111011110101011 0111111100010000 1100000011011010 
0100110011111011 1111110000000011 0111111011()()()()()() 001110110110()l10 
000000101111011001100000010000100001001110110100 0100000111111111 
0000000111111110 0000000011111111 0011011111111111 0100110000001000 

By measuring the distance between a given 16-bit field and all possible values for 
that field. we can discover which values of the feature are most desired. (Closer in 
hamming distance is better.) The absolute range of values is the sensitivity of the lo­
cation to changes along that feature dimension. Figure 5 shows an analysis of the 16-
bit field for month in the given memory location: 

Location's 16-bit field 
for month:0111111100010000 

values for months Distance 
JAN: 1111111100000000 2 
FEB: 0111111110000000 2 
MAR: 0011111111000000 4 
APR: 0000111111110000 6 

. .. etc ... 

Feature (sensitivity 
Month (12) t IS f- I I -

Less desirable f\ 
Value desirability IOV -

More desirable S f- \-

~ ° 11 

JFMAMJJASOND 
Values 

Figure 5: Analyzing a location field 

In this case. the location finds January and February the most desirable months for 
rain. and July and August the least desirable months. 

The relative sensitivity towards different features measures which features are most 
important in making the prediction of rain. In this case. we have a change of dis­
tance of 12 bits. which makes this location very sensitive to the value of the month. 

We can estimate which features are the most important in predicting rain by looking 
at the relative sensitivity of the different fields in the location to changes in their 
feature. The following graphs show the most sensitive features of the previously 
shown memory location towards predicting rain; that is. the location is very sensi­
tive to the combination of all these fields with the proper values. 
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Figure 6: The four most sensitive features 

The "most preferred values" of these fields are the minima of these graphs. For exam­
ple, this location greatly prefers January and February over June and JUly. The pref­
erences of this location are for the month to be January or February, for low pres­
sure. high cloud cover, and low temperature. Surprisingly. whether it rained in the 
last four hours is not one of the most important features for this location. 

We can also look some of the least sensitive features. The following graphs show 
the least sensitive features of the memory location towards predicting rain; that is, 
the location is relatively insensitive to the values of these features. 

Year (5) Wet bulb temp (5) Wind direction (4) 
Iii 

10 

61 73 80 210 240 270 N E S W 

Figure 7: The three least sensitive features 

This set contains some fields that one would expect to be relatively unimportant, 
such as year. Fields such as wind direction is unimportant to this location, but inter­
estingly other highly-rated locations fmd it to be very useful in other regions of the 
weather space. 
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COMPARISON WITH DAVIS' METHOD 
Davis' Algorithm has been shown to be a powerful new method for augmenting the 
power of a backpropagation-based system. The following is an attempt to contrast 
our approaches, without denigrating the importance his groundbreaking work. The 
reader is referred to his book for detailed information about his approach. 

It is difficult to directly compare the performance of these techniques given the pre­
liminary nature of the experiments done with Genetic Memory. However, it is pos­
sible to compare architectural features of the systems, and estimate the relative 
strengths a weaknesses. 

• 8ackpropagation vs. Associative Memories: Davis' approach relies on the per­
formance of the backpropagation algorithm for the central learning cycle of the sys­
tem. Associative memories have a far quicker learning cycle than backpropagation 
networks, and have been shown to have preferential characteristics after training in 
some domains. A system based on an associative memory may share these advantages 
over a system based on backpropagation. 

• Scalability: Many issues concerning the scalability of backpropagation networks 
remain unresolved. It is not simple to build backpropagation networks of thousands 
or hundreds of thousands of units. In contrast, Kanerva's Sparse Distributed Memo­
ry is specifically designed for such massive construction; one implementation on the 
Connection Machine can contain l,O(XM)()() hidden units. The Genetic Memory shares 
this property. 

• Unity: Davis' algorithm has two levels of processing. The first level consists of 
standard backpropagation networks, and the second is a meta-level which manipu­
lates these networks. The Genetic Memory has incorporated both algorithms into a 
single network; both algorithms are operating simultaneously. 

My intuition is that different algorithms may be best suited for the different layers 
of a neural network. Layers with a large fan-out (such as the input layer to the lay­
er of hidden units) may be best driven by an algorithm suited to high-dimensional 
searching, such as Genetic Algorithms or a Kohonen-style self-organizing system. 
Layers with a large fan-in (such as the hidden-unit layer to the output layer) may be 
best driven by a hill-climbing algorithms such a backpropagation. 

CONCLUSIONS 
• Real-world problems are often "high-dimensional", that is, are described by large 
numbers of dependent variables. Algorithms must be specifically designed to func­
tion well in such high-dimensional spaces. Genetic Memory is such an algorithm . 

• Genetic Memory, while sharing some features with Davis' approach, has fundamen­
tal differences that may make it more appropriate to some problems and easier to 
scale to extremely-large (> 100,000 node) systems. 

• The incorporation of the Genetic Algorithm improves the recall performance of a 
standard associative memory. 

• The structure of the Genetic Memory allows the user to access the parameters dis­
covered by the Genetic Algorithm and used to assist in making the associations 
stored in the memory. 
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