
160

SCALING AND GENERALIZATION IN
NEURAL NETWORKS: A CASE STUDY

Subutai Ahmad
Center for Complex Systems Research

University of Illinois at Urbana-Champaign
508 S. 6th St., Champaign, IL 61820

ABSTRACT

Gerald Tesauro
IBM Watson Research Center

PO Box 704
Yorktown Heights, NY 10598

The issues of scaling and generalization have emerged as key issues in
current studies of supervised learning from examples in neural networks.
Questions such as how many training patterns and training cycles are
needed for a problem of a given size and difficulty, how to represent the
inllUh and how to choose useful training exemplars, are of considerable
theoretical and practical importance. Several intuitive rules of thumb
have been obtained from empirical studies, but as yet there are few rig
orous results. In this paper we summarize a study Qf generalization in
the simplest possible case-perceptron networks learning linearly separa
ble functions. The task chosen was the majority function (i.e. return
a 1 if a majority of the input units are on), a predicate with a num
ber of useful properties. We find that many aspects of.generalization
in multilayer networks learning large, difficult tasks are reproduced in
this simple domain, in which concrete numerical results and even some
analytic understanding can be achieved.

1 INTRODUCTION
In recent years there has been a tremendous growth in the study of machines which
learn. One class of learning systems which has been fairly popular is neural net
works. Originally motivated by the study of the nervous system in biological organ
isms and as an abstract model of computation, they have since been applied to a
wide variety of real-world problems (for examples see [Sejnowski and Rosenberg, 87]
and [Tesauro and Sejnowski, 88]). Although the results have been encouraging,
there is actually little understanding of the extensibility of the formalism. In par
ticular, little is known of the resources required when dealing with large problems
(i.e. scaling), and the abilities of networks to respond to novel situations (i.e. gen
eraliz ation).

The objective of this paper is to gain some insight into the relationships between
three fundament~l quantities under a variety of situations. In particular we are in
terested in the relationships between the size of the network, the number of training

Scaling and Generalization in Neural Networks 161

instances, and the generalization that the network performs, with an emphasis on
the effects of the input representation and the particular patterns present in the
training set.

As a first step to a detailed understanding, we summarize a study of scaling and
generalization in the simplest possible case. Using feed forward networks, the type of
networks most common in the literature, we examine the majority function (return
a 1 if a majority of the inputs are on), a boolean predicate with a number of useful
features. By using a combination of computer simulations and analysis in the limited
domain of the majority function, we obtain some concrete numerical results which
provide insight into the process of generalization and which will hopefully lead to a
better understanding of learning in neural networks in general.·

2 THE MAJORITY FUNCTION

The function we have chosen to study is the majority function, a simple predicate
whose output is a 1 if and only if more than half of the input units are on. This
function has a number of useful properties which facilitate a study of this type.
The function has a natural appeal and can occur in several different contexts in the
real-world. The problem is linearly separable (i.e. of predicate order 1 [Minsky and
Papert, 69]). A version of the perceptron convergence theorem applies, so we are
guaranteed that a network with one layer of weights can learn the function. Finally,
when there are an odd number of input units, exactly half of the possible inputs
results in an output of 1. This property tends to minimize any negative effects that
may result from having too many positive or negative training examples.

3 METHODOLOGY

The class of networks used are feed forward networks [Rumelhart and McClelland, 86],
a general category of networks that include perceptrons and the multi-layered net
works most often used in current research. Since majority is a boolean function
of predicate order 1, we use a network with no hidden units. The output function
used was a sigmoid with a bias. The basic procedure consisted of three steps. First
the network was initialized to some random starting weights. Next it was trained
using back propagation on a set of training patterns. Finally, the performance of
the network was tested on a set of random test patterns. This performance figure
was used as the estimate of the network's generalization. Since there is a large
amount of randomness in the procedure, most of our data are averages over several
simulations.

O. The material contained in this paper is a condensation of portions of the first author's
M.S. thesis [Ahmad, 88].

162 Ahmad and Tesauro

f
0.50

0.42

0.33

0.25

0.17

0.08

0.00
0 70 140 210 280 350

5
420

Figure 1: The average failure rate as a function of S. d = 25

Notation. In the following discussion, we denote 5 to be the number of training
patterns, d the number of input units, and c the number of cycles through the train
ing set. Let f be the failure rate (the fraction of misclassified training instances),
and rr be the set of training patterns.

4 RANDOM TRAINING PATTERNS
We first examine the failure rate as a function of 5 and d. Figure 1 shows the
graph of the average failure rate as a function of S, for a fixed input size d = 25.
Not surprisingly we find that the failure rate decreases fairly monotonically with 5.
Our simulations show that in fact, for majority there is a well defined relationship
between the failure rate and 5. Figure 2 shows this for a network with 25 input
units. The figure indicates that In f is proportional to 5 implying that the failure
rate decreases exponentially with 5, i.e., , = ae-fJs . 1/ {3 can be thought of as a
characteristic training set size, corresponding to a failure rate of a/e.

Obtaining the exact scaling relationship of l/P was somewhat tricky. Plotting {3 on
a log-log plot against d showed it to be close to a straight line, indicating that 1/ {3
increases'" d(J for some constant a. Extracting the exponent by measuring the slope
of the log-log graph turned out to be very error prone, since the data only ranged
over one order of magnitude. An alternate method for obtaining the exponent is
to look for a particular exponent a by setting 5 = ad(J. Since a linear scaling
relationship is theoretically plausible, we measured the failure rate of the network

In!

Scaling and Generalization in Neural Networks 163

G."'"

-1.000

-Z.OOO

-3.000

-4.000

-5.000

-6.000
0.0 70.0 140.0 Z10.0 Z80.0 350.0 4Z0.0

s
Figure 2: In f as a function of S. d = 25. The slope was == -0.01

at S = ad for various values of a. As Figure 3 shows, the failure rate remains more
or less constant for fixed values of a, indicating a linear scaling relationship with d.
Thus O(d) training patterns should be required to learn majority to a fixed level of
performance. Note that if we require perfect learning, then the failure rate has to
be < 1/(2d - S) ,..,. 1/2d • By substituting this for f in the above formula and solving
for S, we get that (1)(dln 2 + In a) patterns are required. The extra factor of d

suggests that O(d2) would be required to learn majority perfectly. We will show in
Section 6.1 that this is actually an overestimate.

5 THE INPUT REPRESENTATION

So far in our simulations we have used the representation commonly used for boolean
predicates. Whenever an input feature has been true, we clamped the corresponding
input unit to a 1, and when it has been off we have clamped it to a O. There is no
reason, however, why some other representation couldn't have been used. Notice
that in back propagation the weight change is proportional to the incoming input
signal, hence the weight from a particular input unit to the output unit is changed
only when the pattern is misclassified and the input unit is non-zero. The weight
remains unchanged when the input unit is O. If the 0,1 representation were changed
to a-l,+1 representation each weight will be changed more often, hence the network
should learn the training set quicker (simulations in [Stornetta and Huberman, 81]
reported such a decrease in training time using a -i, +i representation.)

164 Ahmad and Tesauro

f
0.50

0.42

0.33

0.25

0.17

0.08

~~--------------------

-
S=3d

S=5d

S=7d

0.00 +----+----+-----+---+----+---.... 60
20 27 33 40 47 53

d

Figure 3: Failure ra.te VB d with S = 3d, 5d, 7 d.

We found that not only did the training time decrease with the new representation,
the generalization of the network improved significantly. The scaling of the failure
rate with respect to S is unchanged, but for any fixed value of S, the generalization
is about 5 - 10% better. Also, the scaling with respect to dis still linear, but the
constant for a fixed performance level is smaller. Although the exact reason for
the improved generalization is unclear, the following might be a plausible reason.
A weight is changed only if the corresponding input is non-zero. By the definition
of the majority function, the average number of units that are on for the positive
instances is higher than for the negative instances. Hence, using the 0,1 represen
tation, the weight changes are more pronounced for the positive instances than for
the negative instances. Since the weights are changed whenever a pattern is mis
classified, the net result is that the weight change is greater when a positive event
is misclassified than when a negative event is misclassified. Thus, there seems to be
a bias in the 0,1 representation for correcting the hyperplane more when a positive
event is misclassified. In the new representation, both positive and negative events
are treated equally hence it is unbiased.

The basic lesson here seems to be that one should carefully examine every choice
that has been made during the design process. The representation of the input,
even down to such low level details as deciding whether "off" should be represented
as 0 or -1, could make a significant difference in the generalization.

Scaling and Generalization in Neural Networks 165

6 BORDER PATTERNS

We now consider a method for improving the generalization by intelligently selecting
the patterns in the training set. Normally, for a given training set, when the inputs
are spread evenly around the input space, there can be several generalizations which
are consistent with the patterns. The performance of the network on the test
set becomes a random event, depending on the initial state of the network. If
practical, it makes sense to choose training patterns whic~ can limit the possible
generalizations. In particular, if we can find those examples which are closest to
the separating surface, we can maximally constrain the number of generalizations.
The solution that the network converges to using these "border" patterns should
have a higher probability of being a good separator. In general finding a perfect
set of border patterns can be computationally expensive, however there might exist
simple heuristics which can help select good training examples.

We explored one heuristic for choosing such points: selecting only those patterns
in which the number of 1 's is either one less or one more than half the number
of input units. Intuitively, these inputs should be close to the desired separating
surface, thereby constraining' the network more than random patterns would. Our
results show that using only border patterns in the training set, there is a large
increase in the expected performance of the network for a given S. In addition, the
scaling behavior as a function of S seems to be very different and is faster than an
exponential decrease. (Figure 4 shows typical failure rate vs S curves comparing
border patterns, the -1,+1 representation, and the 0,1 representation.)

6.1 BORDER PATTERNS AND PERFECT LEARNING

We say the network has perfectly learned a function when the test patterns are never
misclassified. For the majority function, one can argue that at least some border
patterns must be present in order to guarantee perfect performance. If no border
patterns were in the training set, then the network could have learned the f - 1
of d or the f + 1 of d function . Furthermon~, if we know that a certain number
of border patterns is guaranteed to give perfect performance, say bed), then given
the probability that a random pattern is a border pattern, we can calculate the
expected number of random patterns sufficient to learn majority.

For odd d, there are 2 * (;) border patterns, so the probability of choosing a

border pattern randomly is:

(;)
2d- 1

As d gets larger this probability decreases as 1/.fd.* The expected number of ran
domly chosen patterns required before b(d) border patterns are chosen is therefore:

0* This can be shown using Stirling's approximation to d!.

166 Ahmad and Tesauro

/ --......, '\

0.50

f
0.42

0.33

0.25

0.17

0.08

0.001
0 58 117 175 233 292 350

S

Figure 4: Graph showing the average failure rate vs. S using the 0,1 representation
(right), the -1,+1 representation (middle), and using border patterns (left). The network
had 23 inputs units and was tested on a test set consisting of 1024 patterns.

b(cl)Vd. From our data we find that 3d border patterns are always sufficient to learn
the test set perfectly. From this, and from the theoretical results in [Cover, 65], we
can be confident that b(cI) is linear in d. Thus, O(fi3/2) random patterns should be
sufficient to learn majority perfectly.

It should be mentioned that border patterns are not the only patterns which con
tribute to the generalization of the network. Figure 5 shows that the failure rate of
the network when trained with random training patterns which happen to contain
b border patterns is substantially better than a training set consisting of only b
border patterns. Note that perfect performance is achieved at the same point in
both cases.

7 CONCLUSION

In this paper we have described a systematic study of some of the various factors
affecting scaling and generalization in neural networks. Using empirical studies in
a simple test domain, we were able to obtain precise scaling relationships between
the performance of the network, the number of training patterns, and the size of
the network. It was shown that for a fixed network size, the failure rate decreases
exponentially with the size of the training set. The number of patterns required to

Scaling and Generalization in Neural Networks 167

f •. u

•. u

•• U

•• 17

....

....
• II .. II ,. II

N wnber of border patterna.

Figure 5: This figure compares the failure rate on a random training set which happens
to contain b border patterns (bottom plot) with a training set composed of only b border
patterns (top plot).

achieve a fixed performance level was shown to increase linearly with the network
SIZe.

A general finding was that the performance of the network was very sensitive to a
number of factors. A slight change in the input representation caused a jump in the
performance of the network. The specific patterns in the training set had a large
influence on the final weights and on the generalization. By selecting the training
patterns intelligently, the performance of the network was increased significantly.

The notion of border patterns were introduced as the most interesting patterns in
the training set. As far as the number of patterns required to teach a function
to the network, these patterns are near optimal. It was shown that a network
trained only on border patterns generalizes substantially better than one trained
on the same number of random patterns. Border patterns were also used to derive
an expected bound on the number of random patterns sufficient to learn majority
perfectly. It was shown tha,t on average, O(d3 / 2) random patterns are sufficient to
learn majority perfectly.

In conclusion, this paper advocates a careful study of the process of generalization
in neural networks. There are a large number of different factors which can affect
the performance. Any assumptions made when applying neural networks to a real
world problem should be made with care. Although much more work needs to be

168 Ahmad and Tesauro

done, it was shown that many of the issues can be effectively studied in a simple
test domain.

Acknowledgements

We thank T. Sejnowski, R. Rivest and A. Barron for helpful discussions. We also
thank T. Sejnowski and B. Bogstad for assistance in development of the simulator
code. This work was partially supported by the National Center for Supercomputing
Applications and by National Science Foundation grant Phy 86-58062.

References

[Ahmad,88] S. Ahmad. A Study of Scaling and Generalization in Neural Networks.
Technical Report UIUCDCS-R-88-1454, Department of Computer Science, Uni
versity of Illinois, Urbana-Champaign, IL, 1988.

[Cover, 65] T. Cover. Geometric and satistical properties of systems oflinear equa
tions. IEEE Trans. Elect. Comp., 14:326-334, 1965.

[Minsky and Papert, 69] Marvin Minsky and Seymour Papert. Perceptrons. MIT
Press, Cambridge, Mass., 1969.

[Muroga, 71] S Muroga. Threshold Logic and its Applications. Wiley, New York,
1971.

[Rumelhart and McClelland, 86] D. E. Rumelhart and J. L. McClelland, editors.
Parallel Distributed Processing: Explorations in the Microstructure of Cognition:
Foundations. Volume I, MIT Press, Cambridge, Mass., 1986.

[Stornetta and Huberman, 87] W.S. Stornetta and B.A. Huberman. An improved
three-layer, back propagation algorithm. In Proceedings of the IEEE First In
ternational Conference on Neural Networks, San Diego, CA, 1987.

[Sejnowski and Rosenberg, 87] T.J. Sejnowski and C.R. Rosenberg. Parallel net
works that learn to pronounce English text. Complex Systems, 1:145-168, 1987.

[Tesauro and Sejnowski, 88] G. Tesauro and T.J. Sejnowski. A Parallel Network
that Learns to Play Backgammon. Technical Report CCSR-88-2, Center for
Complex Systems Research, University of Illinois, Urbana-Champaign, IL, 1988.

