WINNER-TAKE-ALL # NETWORKS OF O(N) COMPLEXITY J. Lazzaro, S. Ryckebusch, M.A. Mahowald, and C. A. Mead California Institute of Technology Pasadena, CA 91125 #### ABSTRACT We have designed, fabricated, and tested a series of compact CMOS integrated circuits that realize the winner-take-all function. These analog, continuous-time circuits use only O(n) of interconnect to perform this function. We have also modified the winner-take-all circuit, realizing a circuit that computes local nonlinear inhibition. Two general types of inhibition mediate activity in neural systems: subtractive inhibition, which sets a zero level for the computation, and multiplicative (nonlinear) inhibition, which regulates the gain of the computation. We report a physical realization of general nonlinear inhibition in its extreme form, known as winner-take-all. We have designed and fabricated a series of compact, completely functional CMOS integrated circuits that realize the winner-take-all function, using the full analog nature of the medium. This circuit has been used successfully as a component in several VLSI sensory systems that perform auditory localization (Lazzaro and Mead, in press) and visual stereopsis (Mahowald and Delbruck, 1988). Winner-take-all circuits with over 170 inputs function correctly in these sensory systems. We have also modified this global winner-take-all circuit, realizing a circuit that computes local nonlinear inhibition. The circuit allows multiple winners in the network, and is well suited for use in systems that represent a feature space topographically and that process several features in parallel. We have designed, fabricated, and tested a CMOS integrated circuit that computes locally the winner-take-all function of spatially ordered input. #### THE WINNER-TAKE-ALL CIRCUIT Figure 1 is a schematic diagram of the winner-take-all circuit. A single wire, associated with the potential V_c , computes the inhibition for the entire circuit; for an n neuron circuit, this wire is O(n) long. To compute the global inhibition, each neuron k contributes a current onto this common wire, using transistor T_{2k} . To apply this global inhibition locally, each neuron responds to the common wire voltage V_c , using transistor T_{1k} . This computation is continuous in time; no clocks are used. The circuit exhibits no hysteresis, and operates with a time constant related to the size of the largest input. The output representation of the circuit is not binary; the winning output encodes the logarithm of its associated input. Figure 1. Schematic diagram of the winner-take-all circuit. Each neuron receives a unidirectional current input I_k ; the output voltages $V_1 ldots V_n$ represent the result of the winner-take-all computation. If $I_k = \max(I_1 ldots I_n)$, then V_k is a logarithmic function of I_k ; if $I_j ldots I_k$, then $V_j ldots 0$. A static and dynamic analysis of the two-neuron circuit illustrates these system properties. Figure 2 shows a schematic diagram of a two-neuron winner-take-all circuit. To understand the behavior of the circuit, we first consider the input condition $I_1 = I_2 \equiv I_m$. Transistors T_{1_1} and T_{1_2} have identical potentials at gate and source, and are both sinking I_m ; thus, the drain potentials V_1 and V_2 must be equal. Transistors T_{2_1} and T_{2_2} have identical source, drain, and gate potentials, and therefore must sink the identical current $I_{c_1} = I_{c_2} = I_c/2$. In the subthreshold region of operation, the equation $I_m = I_0 \exp(V_c/V_o)$ describes transistors T_{1_1} and T_{1_2} , where I_0 is a fabrication parameter, and $V_0 = kT/q\kappa$. Likewise, the equation $I_c/2 = I_0 \exp((V_m - V_c)/V_o)$, where $V_m \equiv V_1 = V_2$, describes transistors T_{2_1} and T_{2_2} . Solving for $V_m(I_m, I_c)$ yields $$V_m = V_o \ln(\frac{I_m}{I_o}) + V_o \ln(\frac{I_c}{2I_o}). \tag{1}$$ Thus, for equal input currents, the circuit produces equal output voltages; this behavior is desirable for a winner-take-all circuit. In addition, the output voltage V_m logarithmically encodes the magnitude of the input current I_m . Figure 2. Schematic diagram of a two-neuron winner-take-all circuit. The input condition $I_1 = I_m + \delta_i$, $I_2 = I_m$ illustrates the inhibitory action of the circuit. Transistor T_{1_1} must sink δ_i more current than in the previous example; as a result, the gate voltage of T_{1_1} rises. Transistors T_{1_1} and T_{1_2} share a common gate, however; thus, T_{1_2} must also sink $I_m + \delta_i$. But only I_m is present at the drain of T_{1_2} . To compensate, the drain voltage of T_{1_2} , V_2 , must decrease. For small δ_i s, the Early effect serves to decrease the current through T_{1_2} , decreasing V_2 linearly with δ_i . For large δ_i s, T_{1_2} must leave saturation, driving V_2 to approximately 0 volts. As desired, the output associated with the smaller input diminishes. For large δ_i s, $I_{c_2} \approx 0$, and $I_{c_1} \approx I_c$. The equation $I_m + \delta_i = I_o \exp(V_c/V_o)$ describes transistor T_{1_1} , and the equation $I_c = I_o \exp((V_1 - V_c)/V_o)$ describes transistor T_{2_1} . Solving for V_1 yields $$V_1 = V_o \ln\left(\frac{I_m + \delta_i}{I_o}\right) + V_o \ln\left(\frac{I_c}{I_o}\right). \tag{2}$$ The winning output encodes the logarithm of the associated input. The symmetrical circuit topology ensures similar behavior for increases in I_2 relative to I_1 . Equation 2 predicts the winning response of the circuit; a more complex expression, derived in (Lazzaro et.al., 1989), predicts the losing and crossover response of the circuit. Figure 3 is a plot of this analysis, fit to experimental data. Figure 4 shows the wide dynamic range and logarithmic properties of the circuit; the experiment in Figure 3 is repeated for several values of I_2 , ranging over four orders of magnitude. The conductance of transistors T_{1_1} and T_{1_2} determines the losing response of the circuit. Variants of the winner-take-all circuit shown in (Lazzaro et. al., 1988) achieve losing responses wider and narrower than Figure 3, using circuit and mask layout techniques. ## WINNER-TAKE-ALL TIME RESPONSE A good winner-take-all circuit should be stable, and should not exhibit damped oscillations ("ringing") in response to input changes. This section explores these dynamic properties of our winner-take-all circuit, and predicts the temporal response of the circuit. Figure 8 shows the two-neuron winner-take-all circuit, with capacitances added to model dynamic behavior. Figure 8. Schematic diagram of a two-neuron winner-take-all circuit, with capacitances added for dynamic analysis. C is a large MOS capacitor added to each neuron for smoothing; C_o models the parasitic capacitance contributed by the gates of T_{11} and T_{12} , the drains of T_{21} and T_{22} , and the interconnect. (Lazzaro et. al., 1988) shows a small-signal analysis of this circuit. The transfer function for the circuit has real poles, and thus the circuit is stable and does not ring, if $I_c > 4I(C_c/C)$, where $I_1 \approx I_2 \approx I$. Figure 9 compares this bound with experimental data. If $I_c > 4I(C_c/C)$, the circuit exhibits first-order behavior. The time constant CV_o/I sets the dynamics of the winning neuron, where $V_o = kT/q\kappa \approx 40$ mV. The time constant CV_E/I sets the dynamics of the losing neuron, where $V_E \approx 50$ V. Figure 10 compares these predictions with experimental data. Figure 3. Experimental data (circles) and theory (solid lines) for a two-neuron winner-take-all circuit. I_1 , the input current of the first neuron, is swept about the value of I_2 , the input current of the second neuron; neuron voltage outputs V_1 and V_2 are plotted versus normalized input current. Figure 4. The experiment of Figure 3 is repeated for several values of I_2 ; experimental data of output voltage response are plotted versus absolute input current on a log scale. The output voltage $V_1 = V_2$ is highlighted with a circle for each experiment. The dashed line is a theoretical expression confirming logarithmic behavior over four orders of magnitude (Equation 1). Figure 9. Experimental data (circles) and theoretical statements (solid line) for a two-neuron winner-take-all circuit, showing the smallest I_c , for a given I, necessary for a first-order response to a small-signal step input. Figure 10. Experimental data (symbols) and theoretical statements (solid line) for a two-neuron winner-take-all circuit, showing the time constant of the first-order response to a small-signal step input. The winning response (filled circles) and losing response (triangles) of a winner-take-all circuit are shown; the time constants differ by several orders of magnitude. ## THE LOCAL NONLINEAR INHIBITION CIRCUIT The winner-take-all circuit in Figure 1, as previously explained, locates the largest input to the circuit. Certain applications require a gentler form of nonlinear inhibition. Sometimes, a circuit that can represent multiple intensity scales is necessary. Without circuit modification, the winner-take-all circuit in Figure 1 can perform this task. (Lazzaro et. al., 1988) explains this mode of operation. Other applications require a local winner-take-all computation, with each winner having influence over only a limited spatial area. Figure 12 shows a circuit that computes the local winner-take-all function. The circuit is identical to the original winner-take-all circuit, except that each neuron connects to its nearest neighbors with a nonlinear resistor circuit (Mead, in press). Each resistor conducts a current I_r in response to a voltage ΔV across it, where $I_r = I_* \tanh(\Delta V/(2V_o))$. I_* , the saturating current of the resistor, is a controllable parameter. The current source, I_o , present in the original winner-take-all circuit, is distributed between the resistors in the local winner-take-all circuit. Figure 11. Schematic diagram of a section of the local winner-take-all circuit. Each neuron i receives a unidirectional current input I; the output voltages V; represent the result of the local winner-take-all computation. To understand the operation of the local winner-take-all circuit, we consider the circuit response to a spatial impulse, defined as $I_k \gg I$, where $I \equiv I_{i \neq k}$. $I_k \gg I_{k-1}$ and $I_k \gg I_{k+1}$, so V_{c_k} is much larger than $V_{c_{k-1}}$ and $V_{c_{k+1}}$, and the resistor circuits connecting neuron k with neuron k-1 and neuron k+1 saturate. Each resistor sinks I_s current when saturated; transistor T_{2_k} thus conducts $2I_s + I_c$ current. In the subthreshold region of operation, the equation $I_k = I_o \exp(V_{c_k}/V_o)$ describes transistor T_{1_k} , and the equation $2I_s + I_c = I_o \exp((V_k - V_{c_k})/V_o)$ describes transistor T_{2k} . Solving for V_k yields $$V_k = V_o \ln((2I_o + I_c)/I_o) + V_o \ln(I_k/I_o). \tag{4}$$ As in the original winner-take-all circuit, the output of a winning neuron encodes the logarithm of that neuron's associated input. As mentioned, the resistor circuit connecting neuron k with neuron k-1 sinks I_s current. The current sources I_c associated with neurons k-1, k-2, ... must supply this current. If the current source I_c for neuron k-1 supplies part of this current, the transistor $T_{2_{k-1}}$ carries no current, and the neuron output V_{k-1} approaches zero. In this way, a winning neuron inhibits its neighboring neurons. This inhibitory action does not extend throughout the network. Neuron k needs only I_o current from neurons k-1, k-2, Thus, neurons sufficiently distant from neuron k maintain the service of their current source I_o , and the outputs of these distant neurons can be active. Since, for a spatial impulse, all neurons k-1, k-2, ... have an equal input current I_o , all distant neurons have the equal output $$V_{i \ll k} = V_o \ln(I_c/I_o) + V_o \ln(I/I_o). \tag{5}$$ Similar reasoning applies for neurons k+1, k+2, The relative values of I_o and I_c determine the spatial extent of the inhibitory action. Figure 12 shows the spatial impulse response of the local winner-take-all circuit, for different settings of I_o/I_c . Figure 12. Experimental data showing the spatial impulse response of the local winner-take-all circuit, for values of I_{\bullet}/I_{c} ranging over a factor of 12.7. Wider inhibitory responses correspond to larger ratios. For clarity, the plots are vertically displaced in 0.25 volt increments. ## CONCLUSIONS The circuits described in this paper use the full analog nature of MOS devices to realize an interesting class of neural computations efficiently. The circuits exploit the physics of the medium in many ways. The winner-take-all circuit uses a single wire to compute and communicate inhibition for the entire circuit. Transistor T_{1_k} in the winner-take-all circuit uses two physical phenomena in its computation: its exponential current function encodes the logarithm of the input, and the finite conductance of the transistor defines the losing output response. As evolution exploits all the physical properties of neural devices to optimize system performance, designers of synthetic neural systems should strive to harness the full potential of the physics of their media. #### Acknowledgments John Platt, John Wyatt, David Feinstein, Mark Bell, and Dave Gillespie provided mathematical insights in the analysis of the circuit. Lyn Dupré proofread the document. We thank Hewlett-Packard for computing support, and DARPA and MOSIS for chip fabrication. This work was sponsored by the Office of Naval Research and the System Development Foundation. #### References Lazzaro, J. P., Ryckebusch, S., Mahowald, M.A., and Mead, C.A. (1989). Winner-Take-All Networks of O(N) Complexity, Caltech Computer Science Department Technical Report Caltech-CS-TR-21-88. Lazzaro, J. P., and Mead, C.A. (in press). Silicon Models of Auditory Localization, Neural Computation. Mahowald, M.A., and Delbruck, T.I. (1988). An Analog VLSI Implementation of the Marr-Poggio Stereo Correspondence Algorithm, Abstracts of the First Annual INNS Meeting, Boston, 1988, Vol. 1, Supplement 1, p. 392. Mead, C. A. (in press). Analog VLSI and Neural Systems. Reading, MA: Addison-Wesley.