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ABSTRACT

A time delay in the response of the neurons in a network can
induce sustained oscillation and chaos. We present a stability
criterion based on local stability analysis to prevent sustained
oscillation in symmetric delay networks, and show an
example of chaotic dynamics in a non-symmetric delay
network.

L. INTRODUCTION

Understanding how time delay affects the dynamics of neural networks is important for
two reasons: First, some degree of time delay is intrinsic to any physically realized
network, both in biological neural systems and in electronic artificial neural networks.
As we will show, it is not obvious what constitutes a "small" (i.e. ignorable) delay
which will not qualitatively change the network dynamics. For some network
configurations, delay much smaller than the intrinsic relaxation time of the network can
induce collective oscillatory behavior not predicted by mathematical models which ignore
delay. These oscillations may or may not be desirable; in either case, one should
understand when and how new dynamics can appear. The second reason to study time
delay is for its intentional use in parallel computation. The dynamics of neural networks
which always converge to fixed points are now fairly well understood. Several neural
network models have appeared recently which use time delay to produce dynamic
computation such as associative recall of sequences [Kleinfeld,1986; Sompolinsky and
Kanter,1986]. It has also been suggested that time delay produces an effective noise in
the network dynamics which can yield improved recall of memories [Conwell, 1987]
Finally, to the extent that neural networks research is inspired by biological systems, the
known presence of time delays in a many real neural systems suggests their usefulness
in parallel computation.

In this paper we will show how time delay in an analog neural network can produce
sustained oscillation and chaos. In section 2 we consider the case of a symmetrically
connected network. It is known [Cohen and Grossberg,1983; Hopfield, 1984] that in the
absence of time delay a symmetric network will always converge to a fixed point
attractor. We show that adding a fixed delay to the response of each neuron will produce
sustained oscillation when the magnitude of the delay exceeds a critical value, which
depends on the neuron gain and the network connection topology. We then analyze the
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all-inhibitory and symmetric ring topologies as examples. In section 3, we discuss
chaotic dynamics in asymmetric neural networks, and give an example of a small (N=3)
network which shows delay-induced chaos. The analytical results presented here are
supported by numerical simulations and experiments performed on a small electronic
neural network with controllable time. A detailed derivation of the stability results for
the symmetric network is given in [Marcus and Westervelt, 1989], and the electronic
circuit used is described in described [Marcus and Westervelt, 1988].

IL. STABILITY OF SYMMETRIC NETWORKS WITH DELAY

The dynamical system we consider describes an electronic circuit of N saturable
amplifiers ("neurons") coupled by a resistive interconnection matrix. The neurons do not
respond to an input voltage u; instantaneously, but produce an output after a delay,
which we take to be the same for all neurons. The neuron input voltages evolve
according to the following equations:

N
ui(t) = —ui(t) + jfl Jijf(uj(t-‘r.)). (1)

The transfer function for each neuron is taken to be an identical sigmoidal function f(u)
with a maximum slope df/du = 8 at u = 0. The unit of time in these equations has been
scaled to the characteristic network relaxation time, thus T can be thought of as the ratio
of delay time to relaxation time. The symmetric interconnection matrix J;; describes the
conductance between neurons i and j is normalized to satisfy Ejlli-l = 1" for all i. This
normalization assumes that each neuron sees the same conductance at its input [Marcus
and Westervelt, 1989]. The initial conditions for this system are a set of N continuous
functions defined on the interval -t < t < 0. We take each initial function to be constant
over that interval, though possibly different for different i. We find numerically that the
results do not depend on the form of the initial functions.

Linear Stability Analysis at Low Gain

Studying the stability of the fixed point at the origin (uj = O for all i) is useful for
understanding the source of delay-induced sustained oscillation and will lead to a low-gain
stability criterion for symmetric networks. It is important to realize however, that for
the system (1) with a sigmoidal nonlinearity, if the origin is stable then it is the unique
attractor, which makes for rather uninteresting dynamics. Thus the origin will almost
certainly be unstable in any useful configuration. Linear stability analysis about the
origin will show that at T =0, as the gain B is increased, the origin always loses
stability by a type of bifurcation which only produces other fixed points, but for T > 0
an alternative type of bifurcation of the origin can occur which produces the sustained
oscillatory modes. The stability criterion derived insures that this alternate bifurcation -
a Hopf bifurcation - does not occur.

The natural coordinate system for the linearized version of (1) is the set of N
eigenvectors of the connection matrix J ij» defined as xi(t), i=1,..N. In terms of the x;(t),
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the linearized System can be written

k(t) = —x(t)+ Blixi(t—t) (2)

where [ is the neuron gain and A, (i=1,..N) are the eigenvalues of J;:. In general, these
eigenvalues have both real and imaginary parts; for J;; = Jj; theli are purely real.
Assuming exponential time evolution of the form x,(t) = x ;(0)e 1t, where s; is a
complex characteristic exponent, yields a set of N transcendental charactenstlc eq:xauons
(s; + 1)eSit = BA;. The condition for stability of the origin, Re(s;) < O for all i, and the
characteristic equations can be used to specify a stability region in the complex plane of
eigenvalues, as illustrated in Fig. (1a). When all eigenvalues of J.. are within the
stability region, the origin is stable. For T = 0, the stability region is defined by
Re(A) < 1/, giving a half-plane stability condition familiar from ordinary differential
equations. For T > 0, we define the border of the stability region A(0) at an angle 6
from the Re(A) axis as the radial distance from the point A = O to the first point (i.e.
smallest value of A(8)) which satisfies the characteristic equation for purely imaginary
characteristic exponent 5= imj. The delay-dependent value of A(6) is given by
A(9)=-I1§ m2+ 1 ; W=-—tan (0T — 0) 3)

where @ is in the range (0-1/2) <wt < 0, modulo 2x.
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Figure 1. (a) Regions of Stability in the Complex Plane of Eigenvalues A of the
Connection Matrix J . for T = 0,1,00. (b) Where Stability Region Crosses the Real-A
Axis in the Negative Half Plane.

Notice that for nonzero delay the stability region closes on the Re(A) axis in the negative
half-plane. It is therefore possible for negative real eigenvalues to induce an instability
of the origin. Specifically, if the minimum eigenvalue of the symmetric matrix J;; is
more negative than -A(0 = x) then the origin is unstable. We define this "back door"
to the stability region along the real axis as A > 0, dropping the argument O =m. A is
inversely proportional to the gain B and depends on delay as shown in Fig. (1b). For
large and small delay, A can be approximated as an explicit function of delay and gain:
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A/p=w/2t T<<1 4a)
A = 1/2

a/ B){l+ (n/(t+ l))2:| >>1 (4b)

In the infinite-delay limit, the delay-differential system (1) is equivalent to an iterated
map or parallel-update network of the form uj(t+1) = ZJ J ij f(uj(t)) where t is a discrete
iteration index. In this limit, the stability region is circular, corresponding to the fixed
point stability condition for the iterated map system.

Consider the stability of the origin in a symmetrically connected delay system (1) as the
neuron gain [ is increased from zero to a large value. A bifurcation of the origin will
occur when the maximum eigenvalue A, >0 of J;; becomes larger than 1/B or when
the minimum eigenvalue A ... < 0 becomes more negative than -A = —B‘l(m2+l)1’2,
where ® = —tan(w7t), [/2 < ® < ©t]. Which bifurcation occurs first depends on the
delay and the eigenvalues of J;;. The bifurcation at A, .. = B'l is a pitchfork (as it is
for T = 0) corresponding to a c“'naracteristic exponent s; crossing into the positive real
half plane along the real axis. This bifurcation creates a pair of fixed points along the
eigenvector x; associated with that eigenvalue. These fixed points constitute a single
memory state of the network. The bifurcation at A . = - A corresponds to a Hopf
bifurcation [Marsden and McCracken,1976], where a pair of characteristic exponents pass
into the real half plane with imaginary components +® where ® = -tan(®t), [7/2 < ®
< n]. This bifurcation, not present at T = 0, creates an oscillatory attractor along the
eigenvector associated with A ;.

A simple stability criterion can be constructed by requiring that the most negative
eigenvalue of the (Symmetric) connection matrix not be more negative than —A. Because
A is always larger than its small-delay limit 7/(21), the criterion can be stated as a
limit on the size on the delay (in units of the network relaxation time.)

1< ——2X— = nosustained oscillation. (5)

2pA min

Linear stability analysis does not prove global stability, but the criterion (5) is supported
by considerable numerical and experimental evidence [Marcus and Westervelt, 1989].
For long delays, where A = 7, linear stability analysis suggests that sustained
oscillation will not exist as long as -]3'1 <Apin- In the infinite-delay limit, it can be
shown that this condition insures global stability in the discrete-time parallel-update
network. [Marcus and Westervelt, to appear].

At large gain, Eq. (5) does not provide a useful stability criterion because the delay
required for stability tends to zero as [ — oo. The nonlinearity of the transfer function
becomes important at large gain and stable, fixed-point-only dynamics are found at large
gain and nonzero delay, indicating that Eq. (5) is overly conservative at large gain. To
understand this, we must include the nonlinearity and consider the stability of the
oscillatory modes themselves. This is described in the next section.
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