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ABSTRACT 
A time delay in the response of the neurons in a network can 
induce sustained oscillation and chaos. We present a stability 
criterion based on local stability analysis to prevent sustained 
oscillation in symmetric delay networks, and show an 
example of chaotic dynamics in a non-symmetric delay 
network. 

L INTRODUCTION 
Understanding how time delay affects the dynamics of neural networks is important for 
two reasons: First, some degree of time delay is intrinsic to any physically realized 
network, both in biological neural systems and in electronic artificial neural networks. 
As we will show, it is not obvious what constitutes a "small" (i.e. ignorable) delay 
which will not qualitatively change the network dynamics. For some network 
configurations, delay much smaller than the intrinsic relaxation time of the network can 
induce collective oscillatory behavior not predicted by mathematical models which ignore 
delay. These oscillations mayor may not be desirable; in either case, one should 
understand when and how new dynamics can appear. The second reason to study time 
delay is for its intentional use in parallel computation. The dynamics of neural networks 
which always converge to fixed points are now fairly well understood. Several neural 
network models have appeared recently which use time delay to produce dynamic 
computation such as associative recall of sequences [Kleinfeld,1986; Sompolinsky and 
Kanter, 1986]. It has also been suggested that time delay produces an effective noise in 
the network dynamics which can yield improved recall of memories [Conwell, 1987] 
Finally, to the extent that neural networks research is inspired by biological systems, the 
known presence of time delays in a many real neural systems suggests their usefulness 
in parallel computation. 

In this paper we will show how time delay in an analog neural network can produce 
sustained oscillation and chaos. In section 2 we consider the case of a symmetrically 
connected network. It is known [Cohen and Grossberg, 1983; Hopfield, 1984] that in the 
absence of time delay a symmetric network will always converge to a fixed point 
attractor. We show that adding a fixed delay to the response of each neuron will produce 
sustained oscillation when the magnitude of the delay exceeds a critical value, which 
depends on the neuron gain and the network connection topology. We then analyze the 
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all-inhibitory and symmetric ring topologies as examples. In section 3, we discuss 
chaotic dynamics in asymmetric neural networks, and give an example of a small (N=3) 
network which shows delay-induced chaos. The analytical results presented here are 
supported by numerical simulations and experiments performed on a small electronic 
neural network with controllable time. A detailed derivation of the stability results for 
the symmetric network is given in [Marcus and Westervelt, 1989], and the electronic 
circuit used is described in described [Marcus and Westervelt, 1988]. 

II. STABILITY OF SYMMETRIC NETWORKS WITH DELAY 
The dynamical system we consider describes an electronic circuit of N saturable 
amplifiers ("neurons") coupled by a resistive interconnection matrix. The neurons do not 
respond to an input voltage ui instantaneously, but produce an output after a delay, 
which we take to be the same for all neurons. The neuron input voltages evolve 
according to the following equations: 

N 
iI.(t) = -u.(t) + L J .. f(u.(t-t». 

1 1 j = 1 IJ J 
(1 ) 

The transfer function for each neuron is taken to be an identical sigmoidal function feu) 
with a maximum slope df/du = ~ at u = O. The unit of time in these equations has been 
scaled to the characteristic network relaxation time, thus t can be thought of as the ratio 
of delay time to relaxation time. The symmetric interconnection matrix Jij describes the 
conductance between neurons i and j is normalized to satisfy LjlJijl = 1 for all i. This 
normalization assumes that each neuron sees the same conductance at its input [Marcus 
and Westervelt, 1989]. The initial conditions for this system are a set of N continuous 
functions defined on the interval -t ~ t ~ O. We take each initial function to be constant 
over that interval, though possibly different for different i. We find numerically that the 
results do not depend on the form of the initial functions. 

Linear Stability Analysis at Low Gain 

StUdying the stability of the fixed point at the origin (ui = 0 for all i) is useful for 
understanding the source of delay-induced sustained oscillation and will lead to a low-gain 
stability criterion for symmetric networks. It is important to realize however, that for 
the system (1) with a sigmoidal nonlinearity, if the origin is stable then it is the unique 
attractor, which makes for rather uninteresting dynamics. Thus the origin will almost 
certainly be unstable in any useful configuration. Linear stability analysis about the 
origin will show that at 't = 0, as the gain ~ is increased, the origin always loses 
stability by a type of bifurcation which only produces other fixed points, but for 't > 0 
an alternative type of bifurcation of the origin can occur which produces the sustained 
oscillatory modes. The stability criterion derived insures that this alternate bifurcation -
a Hopf bifurcation - does not occur. 

The natural coordinate system for the linearized version of (1) is the set of N 
eigenvectors of the connection matrix Jij' defined as xi(t), i=I, .. N. In terms of the xi(t), 
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the linearized system can be written 

i .( t) = - x .( t) + ~ A. x.( t - t ) 
1 III 

(2) 

where ~ is the neuron gain and Ai (i=I, .. N) are the eigenvalues of Jij' In general, these 
eigenvalues have both real and imaginary parts; for Jij = Jji the A' are purely real. 
Assuming exponential time evolution of the form xi(t) = Xi(O)e~it, where si is a 
complex characteristic exponent, yields a set of N transcendental characteristic equations: 
(si + l)esit = ~Ai' The condition for stability of the origin, Re(si) < 0 for all i, and the 
characteristic equations can be used to specify a stability region in the complex plane of 
eigenvalues, as illustrated in Fig. (la). When all eigenvalues of Jij are within the 
stability region, the origin is stable. For t = 0, the stability region is defined by 
Re(A) < lI~, giving a half-plane stability condition familiar from ordinary differential 
equations. For t > 0, we define the border of the stability region A(e) at an angle e 
from the Re(A) axis as the radial distance from the point A = 0 to the frrst point (Le. 
smallest value of A(e» which satisfies the characteristic equation for purely imaginary 
characteristic exponent Sj i5 iroj. The delay-dependent value of A(e) is given by 

A(e) = ~.J ro2 + 1 ; ro = - tan (rot - e) (3) 

where ro is in the range (e-1tI2) ~ClYt ~ e, modulo 21t. 
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Figure 1. (a) Regions of Stability in the Complex Plane of Eigenvalues A of the 
Connection Matrix Jij' for't = 0,1,00. (b) Where Stability Region Crosses the Real-A 

Axis in the Negative Half Plane. 

Notice that for nonzero delay the stability region closes on the Re(A) axis in the negative 
half-plane. It is therefore possible for negative real eigenvalues to induce an instability 
of the origin. Specifically, if the minimum eigenvalue of the symmetric matrix Jij is 
more negative than -A(e = 1t) then the origin is unstable. We define this "back door" 
to the stability region along the real axis as A > 0, dropping the argument e = 1t. A is 
inversely proportional to the gain ~ and depends on delay as shown in Fig. (lb). For 
large and small delay, A can be approximated as an explicit function of delay and gain: 
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t«l (4 a) 
A _ 

t> > 1 (4b) 

In the infinite-delay limit, the delay-differential system (1) is equivalent to an iterated 
map or parallel-update network of the form ui(t+l) = 1] Jij f(uj(t» where t is a discrete 
iteration index. In this limit, the stability region is circular, corresponding to the fixed 
point stability condition for the iterated map system. 

Consider the stability of the origin in a symmetrically connected delay system (1) as the 
neuron gain ~ is increased from zero to a large value. A bifurcation of the origin will 
occur when the maximum eigenvalue Amax > 0 of Jij becomes larger than l/~ or when 
the minimum eigenvalue Amin < 0 becomes more negative than -A = _~-I(ro2+1)lJ2, 
where ro = -tan(rot), [1CI2 < ro < x]. Which bifurcation occurs first depends on the 
delay and the eigenvalues of Jr. The bifurcation at Amax = ~-1 is a pitchfork (as it is 
for t = 0) corresponding to a ctaracteristic exponent si crossing into the positive real 
half plane along the real axis. This bifurcation creates a pair of fixed points along the 
eigenvector Xi associated with that eigenvalue. These fixed points constitute a single 
memory state of the network. The bifurcation at Amin = - A corresponds to a Hopf 
bifurcation [Marsden and McCracken, 1976] , where a pair of characteristic exponents pass 
into the real half plane with imaginary components ±ro where ro = -tan(rot), [x/2 < ro 
< xl. This bifurcation, not present at t = 0, creates an oscillatory attractor along the 
eigenvector associated with ~in' 

A simple stability criterion can be constructed by requiring that the most negative 
eigenvalue of the (symmetric) connection matrix not be more negative than -A. Because 
A is always larger than its small-delay limit 7tI(2t~), the criterion can be stated as a 
limit on the size on the delay (in units of the network relaxation time.) 

t<- x 
2~A . 

mIn 

=> no sustained oscillation. (5) 

Linear stability analysis does not prove global stability, but the criterion (5) is supported 
by considerable numerical and eXferimental evidence [Marcus and Westervelt, 1989]. 
For long delays, where A == W ,linear stability analysis suggests that sustained 
oscillation will not exist as long as _~-1 < Amin' In the infinite-delay limit, it can be 
shown that this condition insures global stability in the discrete-time parallel-update 
network. [Marcus and Westervelt, to appear]. 

At large gain, Eq. (5) does not provide a useful stability criterion because the delay 
required for stability tends to zero as ~ ~ 00. The nonlinearity of the transfer function 
becomes important at large gain and stable, fixed-point-only dynamics are found at large 
gain and nonzero delay, indicating that Eq. (5) is overly conservative at large gain. To 
understand this, we must include the nonlinearity and consider the stability of the 
oscillatory modes themselves. This is described in the next section. 
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Stability in the Large-Gain Limit 
We now analyze the oscillatory mode at large gain for the particular case of coherent 
oscillation. We find a second stability criterion which predicts a gain-independent critical 
delay below which all initial conditions lead to fixed points. This result complements 
the low gain result of the previous section for this class of network; experimentally and 
numerically we find excellent agree in both regimes, with a cross-over at the value of 
gain where fixed points appear away from the origin, p = lIAmax. 

In considering only coherent oscillation, we not only assume that Iij is symmetric but 
that its maximum and minimum eigenvalues satisfy 0 < Amax < -Amin and that the 
eigenvector associated with Amin points in a coherent direction, defined to be along any 
of the 2N vectors of the form (±I,±l,±I, ... ) in the ui basis. For this case, we find that 
in the limit of infinite gain, where the nonlinearity is of the form f(u) = sgn(u), multiple 
fixed point attractors coexist with the oscillatory attractor and that the size of the basin 
of attraction for the oscillatory mode varies with the delay [Marcus and Westervelt, 
1988]. At a critical value of delay 'tcrit the basin of attraction for oscillation vanishes 
and the oscillatory mode loses stability. In [Marcus and Westervelt, 1989] we show: 

't . = -In( 1 + A max / A . ) cnt mIn 
(6) 

For delays less than this critical value, all initial states lead to stable fIXed points. 

Notice that the critical delay for coherent oscillation diverges as IAmax/Aminl ~ 1-. 
Experimentally and numerically we find that this prediction has more general 
applicability: None of the symmetric networks investigated which satisfied 
IAmax/Aminl ~ 1 (and Amax > 0) showed sustained oscillation for 't < -10. This 
observation is a useful criterion for electronic circuit design, where single-device delays 
are generally shorter than the circuit relaxation time ('t < 1), but only the case of 
coherent oscillation is supported by analysis. 

Examples 

As a first example, we consider the fully-connected all-inhibitory network, Eq. (1) with 
Iii = (N-IrI(~ij - 1). This matrix has N-I degenerate eigenvalues at +lI(N-I) and a 
smgle eigenvalue at -1. A similar network configuration (with delays) has been studied 
as a model of lateral inhibition in the eye of the horseshoe crab, Limulus [Coleman and 
Renninger,I975,I976; Hadeler and Tomiuk,I977; anderHeiden, 1980]. Previous analysis 
of sustained oscillation in this system has assumed a coherent form for the oscillatory 
solution, which reduces the problem to a single scalar delay-differential equation. 
However, by constraining the solution to lie on along the coherent direction, the 
instability of the oscillatory mode discussed above is not seen. Because of this 
assumption, fixed-point-only dynamics in the large-gain limit with finite delay are not 
predicted by previous treatments, to our knowledge. 
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The behavior of the network at various values of gain and delay are illustrated in Fig.2 
for the particular case of N=3. The four regions labeled A,B,C and D characterize the 
behavior for all N. At low gain (~ < N-1) the origin is the unique attractor for small 
delay (region A) and undergoes a Hopf bifurcation at to sustained coherent oscillation at 
't - 7t(~2_1)-112 for large delay (region B). At ~ = N-1 fixed points away from the origin 
appear. In addition to these fixed points, an oscillatory attractor exists at large gain for 
't > In [(N-1)/(N-2)] (== liN for large N) (region C). Sustained oscillation does not 
exist below this critical delay (region D). 

c 

A D 

10 100 

Figure 2. Stability Diagram for the All-Inhibitory Delay Network for the Case N = 3. 
See Text for a Description of A,B,C and D. 

As a second example, we consider a ring of delayed neurons. We allow the symmetric 
connections to be of either sign - that is, connections between neighboring pairs can be 
mutually excitatory or inhibitory - but are all the same strength. The eigenvalues for the 
symmetric ring of size N are Ak = cos(27t(k+<p)/N), where k = O,1,2 ... N-1, <p = 112 if 
the produet of connection strengths around the ring is negative, <p = 0 if the product is 
positive. Borrowing from the language of disordered magnetic systems, a ring which 
contains an odd number of negative connections (the case <p = 112) is said to be 
"frustrated." [Toulouse, 1977]. The large-gain stability analysis for the symmetric ring 
gives a rather surprising result Only frustrated rings with an odd number of neurons 
will show sustained oscillation. For this case (N odd.aru1 an odd number of negative 
connections) the critical delay is given by 'tcrit = -In (1 - cos(1tIN». This agrees very 
well with experimental and numerical data, as does the conclusion that rings with even N 
do not show sustained oscillation [Marcus and Westervelt, 1989]. The theoretical large
gain critical delay for the all-inhibitory network and the frustrated ring of the same size 
are compared in Fig. 3. Note that the critical delay for the all-inhibitory network 
decreases (roughly as lIN) for larger networks while the ring becomes less prone to 
oscillation as the network size increases. 
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Figure 3. Critical Delay from Large-Gain Theory for All-Inhibitory Networks (circles) 
and Frustrated Rings (squares) of size N. 

ITI. CHAOS IN NON-SYMMETRIC DELAY NETWORKS 

Allowing non-symmetric interconnections greatly expands the repertoire of neural 
network dynamics and can yield new, powerful computational properties. For example, 
several recent studies have shown that by using both asymmetric connections and time 
delay, a neural network can accurately recall of sequences of stored patterns 
[Kleinfeld,1986; Sompolinsky and Kanter,1986]. It has also been shown that for some 
parameter values, these pattern-generating networks can produce chaotic dynamics 
[Riedel, et ai, 1988]. 

Relatively little is known about the dynamics of large asymmetric networks [Amari, 
1971,1972; KUrten and Clark,1986; Shinomoto,1986; Sompolinsky, et ai, 1988, 
Gutfreund,et al,1988]. A recent study of continuous-time networks with random 
asymmetric connections shows that as N -+ 00 these systems will be chaotic whenever 
the origin is unstable [Sompolinsky,et al,1988]. In discrete-state (±1) networks, with 
either parallel or sequential deterministic dynamics, oscillatory modes with long periods 
are also seen for fully asymmetric random connections (Jij and Jji uncorrelated), but 
when Jij has either symmetric or antisymmetric correlations short-period attractors seem 
to predominate [Gutfreund,et al,1988]. It is not clear whether the chaotic dynamics of 
large random networks will appear in small networks with non-symmetric, but non
random, connections. 

Small networks with asymmetric connections have been used as models of central 
pattern generators found in many biological neural systems. [Cohen,et ai, 1988] These 
models frequently use time delay to produce sustained rhythmic output, motivated in part 
by the known presence of time delay in real central pattern generators. General theoretical 
principles concerning the dynamics of asymmetric network with delay do not exist at 
present. It has been shown, however, that large system size is not necessary to produce 
chaos in neural networks with delay [e.g. Babcock and Westervelt, 1987]. We fmd that 
small systems (N~ 3) with certain asymmetric connections and time delay can produce 
sustained chaotic oscillation. An example is shown in Fig. 4: These data were produced 
using an electronic network [Marcus and Westervelt, 1988] of three neurons with 
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sigmoidal transfer functions f 1 (u(t»=3.8tanh(8u(t-tp, f2(u(t»=2tanh(6.1u(t», 
f3(u(t»=3.5tanh(2.5u(t», connection resistances of ±1O .0 and input capacitances of 
lOnF. Fig. 4 shows the network configuration and output voltages VIand V 2 for 
increasing delay in neuron 1. For t < O.64ms a periodic attractor similar to the upper 
left figure is found; for t > O.97ms both periodic and chaotic attractors are found. 
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V2 -

o -
't 
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0 VI 1.0 0 VI 1.0 

Figure 4. Period Doubling to Chaos as the Delay in Neuron 1 is Increased. 

Chaos in the network of Fig.4 is closely related to a well-known chaotic delay
differential equation with a noninvertible feedback term [Mackey and Glass,1977]. The 
noninvertible or "mixed" feedback necessary to produce chaos in the Mackey-Glass 
equation is achieved in the neural network - which has only monotone transfer 
functions - by using asymmetric connections. 

This association between asymmetry and noninvertible feedback suggests that 
asymmetric connections may be necessary to produce chaotic dynamics in neural 
networks, even when time delay is present. This conjecture is further supported by 
considering the two limiting cases of zero delay and infinite delay, neither of which show 
chaotic dynamics for symmetric connections. 

IV. CONCLUSION AND OPEN PROBLEMS 

We have considered the effects of delayed response in a continuous-time neural network. 
We find that when the delay of each neuron exceeds a critical value sustained oscillatory 
modes appear in a symmetric network. Stability analysis yields a design criterion for 
building stable electronic neural networks, but these results can also be used to created 
desired oscillatory modes in delay networks. For example, a variation of the Hebb rule 
[Hebb, 1949], created by simply taking the negative of a Hebb matrix, will give 
negative real eigenvalues corresponding to programed oscillatory patterns. Analyzing the 
storage capacities and other properties of neural networks with dynamic attractors remain 
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challenging problems [see, e.g. Gutfreund and Mezard, 1988]. 

In analyzing the stability of delay systems, we have assumed that the delays and gains of 
all neurons are identical. This is quite restrictive and is certainly not justified from a 
biological viewpoint. It would be interesting to study the effects of a wide range of 
delays in both symmetric and non-symmetric neural networks. It is possible, for 
example, that the coherent oscillation described above will not persist when the delays 
are widely distributed. 
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