
SKELETONIZATION: 
A TECHNIQUE FOR TRIMMING THE FAT 

FROM A NETWORK VIA RELEVANCE ASSESSMENT 

Michael C. Mozer 
Paul Smolensky 

Department of Computer Science & 
Institute of Cognitive Science 

University of Colorado 
Boulder, CO 80309-0430 

ABSTRACT 

This paper proposes a means of using the knowledge in a network to 
determine the functionality or relevance of individual units, both for 
the purpose of understanding the network's behavior and improving its 
performance. The basic idea is to iteratively train the network to a cer­
tain performance criterion, compute a measure of relevance that identi­
fies which input or hidden units are most critical to performance, and 
automatically trim the least relevant units. This skeletonization tech­
nique can be used to simplify networks by eliminating units that con­
vey redundant information; to improve learning performance by first 
learning with spare hidden units and then trimming the unnecessary 
ones away, thereby constraining generalization; and to understand the 
behavior of networks in terms of minimal "rules." 

INTRODUCTION 

One thing that connectionist networks have in common with brains is that if you open 
them up and peer inside, all you can see is a big pile of goo. Internal organization is 
obscured by the sheer number of units and connections. Although techniques such as 
hierarchical cluster analysis (Sejnowski & Rosenberg, 1987) have been suggested as a 
step in understanding network behavior, one would like a better handle on the role that 
individual units play. This paper proposes one means of using the knowledge in a net­
work to determine the functionality or relevance of individual units. Given a measure of 
relevance for each unit, the least relevant units can be automatically trimmed from the 
network to construct a skeleton version of the network. 

Skeleton networks have several potential applications: 

• Constraining generalization. By eliminating input and hidden units that serve no pur­
pose, the number of parameters in the network is reduced and generalization will be 
constrained (and hopefully improved) . 

• Speeding up learning. Learning is fast with many hidden units, but a large number of 
hidden units allows for many possible generalizations. Learning is slower with few 

107 



108 Mozer and Smolensky 

hidden units. but generalization tends to be better. One idea for speeding up learning is 
to train a network with many hidden units and then eliminate the irrelevant ones. This 
may lead to a rapid learning of the training set. and then gradually, an improvement in 
generalization performance . 

• Understanding the behavior of a network in terms of "rules". One often wishes to get a 
handle on the behavior of a network by analyzing the network in terms of a small 
number of rules instead of an enormous number of parameters. In such situations, one 
may prefer a simple network that performed correctly on 95% of the cases over a com­
plex network that performed correctly on 100%. The skeletonization process can dis­
cover such a simplified network. 

Several researchers (Chauvin, 1989; Hanson & Pratt, 1989; David Rumelhart, personal 
communication, 1988) have studied techniques for the closely related problem of reduc­
ing the number of free parameters in back propagation networks. Their approach 
involves adding extra cost terms to the usual error function that cause nonessential 
weights and units to decay away. We have opted for a different approach - the all-or­
none removal of units - which is not a gradient descent procedure. The motivation for 
our approach was twofold. First, our initial interest was in designing a procedure that 
could serve to focus "attention" on the most important units, hence an explicit relevance 
metric was needed. Second, our impression is that it is a tricky matter to balance a pri­
mary and secondary error term against one another. One must determine the relative 
weighting of these terms, weightings that may have to be adjusted over the course of 
learning. In our experience, it is often impossible to avoid local minima - compromise 
solutions that partially satisfy each of the error terms. This conclusion is supported by 
the experiments of Hanson and Pratt (1989). 

DETERMINING THE RELEVANCE OF A UNIT 

Consider a multi-layer feedforward network. How might we determine whether a given 
unit serves an important function in the network? One obvious source of information is 
its outgoing connections. If a unit in layer I has many large-weighted connections, then 
one might expect its activity to have a big impact on higher layers. However, this need 
not be. The effects of these connections may cancel each other out; even a large input to 
units in layer 1+1 will have little influence if these units are near saturation; outgoing 
connections from the innervated units in 1+1 may be small; and the unit in I may have a 
more-or-Iess constant activity, in which case it could be replaced by a bias on units in 
1+1. Thus, a more accurate measure of the relevance of a unit is needed. 

What one really wants to know is, what will happen to the performance of the network 
when a unit is removed? That is, how well does the network do with the unit versus 
without it? For unit i , then, a straightforward measure of the relevance, Pi' is 

Pi = E without .wt i - E with .wt i , 

where E is the error of the network on the training set. The problem with this measure is 
that to compute the error with a given unit removed, a complete pass must be made 
through the training sel Thus, the cost of computing P is O(np) stimulus presentations, 
where n is the number of units in the network and p is the number of patterns in the 



Skeletonization 109 

trammg set. Further, if the training set is not fixed or is not known to the experimenter, 
additional difficulties arise in computing p. 

We therefore set out to find a good approximation to p. Before presenting this approxi­
mation, it is fust necessary to introduce an additional bit of notation. Suppose that asso­
ciated with each unit i is a coefficient ai which represents the attentional strength of the 
unit (see Figure 1). This coefficient can be thought of as gating the flow of activity from 
the unit: 

OJ = f (~Wji aioi) , 
i 

where OJ is the activity of unit j, Wji the connection strength to j from i, and f the sig­
moid squashing function. If ai = 0, unit i has no influence on the rest of the network; if 
ai = I, unit i is a conventional unit. In terms of a. the relevance of unit i can then be 
rewritten as 

Pi = Ea.:::(J - Ea.=1 • 

We can approximate Pi using the derivative of the error with respect to a: 

lim E a.=y - E a.=1 

1-+1 y- 1 
iJE 

=--
iJa· I a.=1 

Assuming that this equality holds approximately for y = 0: 

Ea.:::(J - Ea.=1 dE 
------ -- or 

-1 daj a.=1 

O .. fi . th A iJE ur approxunatton or pj IS en Pi = --;-- . 
uaj 

This derivative can be computed using an error propagation procedure very similar to 
that used in adjusting the weights with back propagation. Additionally, note that because 
the approximation assumes that o,j is I, the aj never need be changed. Thus. the ai are 
not actual parameters of the system, just a bit of notational convenience used in 

Figure 1. A 4-2-3 network with attentionaI coefficients on the input and hidden units. 



110 Mozer and Smolensky 

estimating relevance. 

In practice, we have found that dE Ida. fluctuates strongly in time and a more stable esti­
mate that yields better results is an exponentially-decaying time average of the derivative. 
In the simulations reported below, we use the following measure: 

dE(t) 
~i(t+I)=.8~i(t)+ .2 d . 

Clj 

One fmal detail of relevance assessment we need to mention is that relevance is com­
puted based on a linear error function, E' = 1: I tpj - opJ I (where p is an index over pat­
terns, j over output units; tpj is the target output, Opj the actual output). The usual qua­
dratic error function, Ef = !Jtpj - Opj )2, provides a poor estima~ of relevance if the out­
put pattern is close to the target. This difficulty with Ef is further elaborated in Mozer 
and Smolensky (1989). In the results reported below, while Ef is used as the error 
metric in training the weights via conventional back propagation, ~ is measured using E'. 
This involves separate back propagation phases for computing the weight updates and the 
relevance measures. 

A SIMPLE EXAMPLE: THE CUE SALIENCE PROBLEM 

Consider a network with four inputs labeled A-D, one hidden unit, and one output. We 
generated ten training patterns such that the correlations between each input unit and the 
output are as shown in the fIrst row of Table 1. (In this particular task. a hidden layer is 
not necessary. The inclusion of the hidden unit simply allowed us to use a standard 
three-layer architecture for all tasks.) 

In this and subsequent simulations, unit activities range from -I to I, input and target 
output patterns are binary (-lor 1) vectors. Training continues until all output activities 
are within some acceptable margin of the target value. Additional details of the training 
procedure and network parameters are described in Mozer and Smolensky (1989). 

To perform perfectly, the network need only attend to input A. This is not what the 
input-hidden connections do, however; their weights have the same qualitative proflle as 
the correlations (second row of Table 1).1 In contrast, the relevance values for the input 

Table 1 

Input Unit 
A B C D 

Correlation with Output Unit 1.0 0.6 0.2 0.0 
Input-Hidden Connection Strmgths 3.15 1.23 .83 - .01 

Pi 5.36 0.(11 0.06 0.00 

~i 0.46 -0.03 0.01 -0.02 

1 The values reported in Table 1 are an average over 100 replications of the simulation with different initial ran­
dom weights. Bs:fore averaging. however, the signs of the weights were flipped if the hidden-output connection 
was negative. 



Skeletonization 111 

units show A to be highly relevant while B-D have negligible relevance. Further, the 
qualitative picture presented by the profile of (Ji s is identical to that of the Pi s. Thus, 
while the weights merely reflect the statistics of the training set, "i indicates the func­
tionality of the units. 

THE RULE-PLUS-EXCEPfION PROBLEM 

Consider a network with four binary inputs labeled A-D and one binary output. The task 
is to learn the function AB+ABci5; the output unit should be on whenever both A and B are 
on, or in the special case that all inputs are off. With two hidden units, back propagation 
arrives at a solution in which one unit responds to AB - the rule - and the other to 
ABeD - the exception. Clearly, the AB unit is more relevant to the solution; it accounts 
for fifteen cases whereas the ABeD unit accounts for only one. This fact is reflected in 
the (Ji: in 100 replications of the simulation, the mean value of (JAB was 1.49 whereas ~ABCD 
was only .17. These values are extremely reliable; the standard errors are .003 and .005, 
respectively. 

Relevance was also measured using the quadratic error function. With this metric, the AB 

unit is incorrectly judged as being less relevant than the ABcD unit (JiB is .029 and (JIBCD is 
.033. As mentioned above, the basis of the failme of the quadratic error function is that "f grossly underestimates the true relevance as the output error gbes to zero. Because 
the one exception pattern is invariably the last to be learned, the pUtput error for the fIf­
teen non-exception patterns is significantly lower, and consequently, the relevance values 
computed on the basis of the non-exception patterns are much smaller than those com­
puted on the basis of the one exception pattern. This results in the relevance assessment 
derived from the exception pattern dominating the overall relevance measure, and in the 
incorrect relevance assignments described above. However, this problem can be avoided 
by assessing relevance using the linear error function. 

If we attempted to "trim" the rule-plus-exception network by eliminating hidden units, 
the logical first candidate would be the less relevant ABeD unit. This trimming process 
would leave us with a simpler network - a skeleton network - whose behavior is easily 
characterized in tenns of a simple rule, but which could only account for 15 of the 16 
input cases. 

CONSTRUCTING SKELETON NETWORKS 

In the remaining examples we construct skeleton networks using the relevance metric. 
The procedure is as follows: (1) train the network until all output unit activities are 
within some specified margin around the target value (for details, see Mozer & Smolen­
sky, 1989); (2) compute" for each unit; (3) remove the unit with the smallest ,,; and (4) 
repeat steps 1-3 a specified number of times. In the examples below, we have chosen to 
trim either the input units or the hidden units, not both simultaneously. but there is no 
reason why this could not be done. 

We have not yet addressed the crucial question of how much to trim away from the net­
work. At present. we specify in advance when to stop trimming. However. the pro­
cedure described above makes use only of the ordinal values of the (J. One untapped 



112 Mozer and Smolensky 

source of information that may be quite informative is the magnitudes of the (J. A large 
increase in the minimum (J value as trimming progresses may indicate that further trim­
ming will seriously disrupt performance in the network. 

THE TRAIN PROBLEM 

Consider the task of determining a rule that discriminates the "east" trains from the 
"west" trains in Figure 2. There are two simple rules - simple in the sense that the rules 
require a minimal number of input features: East trains have a long car and triangle load 
in car or an open car or white wheels on car. Thus, of the seven features that describe 
each train, only two are essential for making the east/west discrimination. 

A 7-1-1 network trained on this task using back propagation learns quickly, but the final 
solution takes into consideration nearly all the inputs because 6 of the 7 features are par­
tially correlated with the east/west discrimination. When the skeletonization procedure is 
applied to trim the number of inputs from 7 to 2, however, the network is successfully 
trimmed to the minimal set of input features - either long car and triangle load, or open 
car and white wheels on car - on each of 100 replications of the simulation we ran. 

The trimming task is far from trivial. The expected success rate with random removal of 
the inputs is only 9.5%. Other skeletonization procedures we experimented with resulted 
in success rates of 50%-90%. 

THE FOUR-BIT MULTIPLEXOR PROBLEM 

Consider a network that learns to behave as a four-bit multiplexor. The task is, given 6 
binary inputs labeled A-D, Mit and M2, and one binary output, to map one of the inputs A-D 

to the output contingent on the values of MI and M2. The logical function being computed 
is MI~A + MIM2B + M1M1C + M\M1.D. 

EAST WEST 

I.-Jib 
Figure 2. The train problem. Adapted from Medin, Wattenmaker, & Michalski, 1987. 



Skeletonization 113 

Table 2 

median epochs median epochs 
architecture failure rate to criterion to criterion 

(with 8 hidden) (with 4 hidden) 

standard 4-hidden net 17% -- 52 

8-+4 skeleton net 0% 25 45 

A standard 4-hidden unit back propgation network was tested against a skeletonized net­
work that began with 8 hidden units initially and was trimmed to 4 (an 8-+4 skeleton net­
work). If the network did not reach the performance criterion within 1000 training 
epochs, we assumed that the network was stuck in a local minimum and counted the run 
as a failure. 

Performance statistics for the two networks are shown in Table 2, averaged over 100 
replications. The standard network fails to reach criterion on 17% of the runs. whereas 
the skeleton network always obtains a solution with 8 hidden units and the solution is not 
lost as the hidden layer is trimmed to 4 units.2 The skeleton network with 8 hidden units 
reaches criterion in about half the number of training epochs required by the standard 
network. From this point, hidden units are trimmed one at a time from the skeleton net­
work, and after each cut the network is retrained to criterion. Nonetheless, the total 
number of epochs required to train the initial 8 hidden unit network and then trim it down 
to 4 is still less than that required for the standard network with 4 units. Furthermore, as 
hidden units are trimmed, the performance of the skeleton network remains close to cri­
terion, so the improvement in learning is substantial. 

THE RANDOM MAPPING PROBLEM 

The problem here is to map a set of random 20-element input vectors to random 2-
element output vectors. Twenty random input-output pairs were used as the training set 
Ten such training sets were generated and tested. A standard 2-hidden unit network was 
tested against a 6~2 skeleton network. For each training set and architecture, 100 repli­
cations of the simulation were run. If criterion was not reached within 1000 training 
epochs, we assumed that the network was stuck in a local minimum and counted the run 
as a failure. 

As Table 3 shows, the standard network failed to reach criterion with two hidden units on 
17% of all runs. whereas the skeleton network failed with the hidden layer trimmed to 
two units on only 8.3% of runs. In 9 of the 10 training sets, the failure rate of the skele­
ton network was lower than that of the standard network. Both networks required com­
parable amounts of training to reach criterion with two hidden units, but the skeleton net­
work reaches criterion much sooner with six hidden units, and its performance does not 
significantly decline as the network is trimmed. These results parallel those of the four­
bit multiplexor. 

1 Here and below we report median epochs to criterion rather than mean epochs to avoid aberrations caused by 
the large number of epochs consumed in failure runs. 



114 Mozer and Smolensky 

Table 3 

standard network 642 skeleton network 

median epochs median epochs median epochs 
training set % failures to criterion % failures to criterion to criterion 

(2 hidden) (6 hidden) (2 hidden) 

1 14 20 7 11 22 
2 16 69 13 12 47 
3 25 34 0 7 14 
4 33 38 0 10 21 
5 38 96 55 35 <max> 
6 9 17 1 9 17 
7 9 28 5 14 43 
8 6 13 0 8 16 
9 8 12 0 8 17 

10 12 12 2 8 17 

SUMMARY AND CONCLUSIONS 

We proposed a method of using the know ledge in a network to determine the relevance 
of individual units. The relevance metric can identify which input or hidden units are 
most critical to the performance of the network. The least relevant units can then be 
trimmed to construct a skeleton version of the network. 

Skeleton networks have application in two different scenarios. as our simulations demon­
strated: 

• Understanding the behavior of a network in terms of "rules" 

- The cue salience problem. The relevance metric singled out the one input that was 
sufficient to solve the problem. The other inputs conveyed redundant information. 

- The rule-plus-exception problem. The relevance metric was able to distinguish the 
hidden unit that was responsible for correctly handling most cases (the general rule) 
from the hidden unit that dealt with an exceptional case. 

- The train problem. The relevance metric correctly discovered the minimal set of 
input features required to describe a category . 

• Improving learning performance 

- The four-bit multiplexor. Whereas a standard network was often unable to discover 
a solution. the skeleton network never failed. Further. the skeleton network learned 
the training set more quickly. 

- The random mapping problem. As in the multiplexor problem. the skeleton net­
work succeeded considerably more often with comparable overall learning speed. 
and less training was required to reach criterion initially. 

Basically. the skeletonization technique allows a network to use spare input and hidden 
units to learn a set of training examples rapidly. and gradually. as units are trimmed. to 
discover a more concise characterization of the underlying regularities of the task. In the 
process, local minima seem to be avoided without increasing the overall learning time. 



Skeletonization 115 

One somewhat surprising result is the ease with which a network is able to recover when 
a unit is removed. Conventional wisdom has it that if, say, a network is given excess hid­
den units, it will memorize the training set, thereby making use of all the hidden units 
available to it. However, in our simulations, the network does not seem to be distributing 
the solution across all hidden units because even with no further training, removal of a 
hidden unit often does not drop performance below the criterion. In any case, there gen­
erally appears to be an easy path from the solution with many units to the solution with 
fewer. 

Although we have presented skeletonization as a technique for trimming units from a net­
work, there is no reason why a similar procedure could not operate on individual connec­
tions instead. Basically, an 0. coefficient would be required for each connection, allow­
ing for the computation of aE lao.. Yann Ie Cun (personal communication, 1989) has 
independently developed 'a procedure quite similar to our skeletonization technique 
which operates on individual connections. 

Acknowledgements 

Our thanks to Colleen Seifert for conversations that led to this work; to Dave Goldberg, 
Geoff Hinton, and Yann Ie Cun for their feedback; and to Eric Jorgensen for saving us 
from computer hell. This work was supported by grant 87-2-36 from the Sloan Founda­
tion to Geoffrey Hinton, a grant from the James S. McDonnell Foundation to Michael 
Mozer, and a Sloan Foundation grant and NSF grants IRI-8609599, ECE-8617947, and 
CDR-8622236 to Paul Smolensky. 

Rererences 

Chauvin, Y. (1989). A back-propagation algorithm with optimal use of hidden units. In 
Advances in Neural Network Information Processing Systems. San Mateo, CA: 
Morgan Kaufmann. 

Hanson, S. J., & Pratt, L. Y. (1989). Some comparisons of constraints for minimal 
network construction with back propagation. In Advances in Neural Network 
Information Processing Systems. San Mateo, CA: Morgan Kaufmann. 

Medin, D. L., Wattenmaker, W. D., & Michalski, R. S. (1987). Constraints and 
preferences in inductive learning: An experimental study of human and machine 
performance. Cognitive Science, 11, 299-339. 

Mozer, M. C., & Smolensky, P. (1989). Skeletonization: A technique for trimming the 
fat from a network via relevance assessment (Technical Report CU-CS-421-89). 
Boulder: University of Colorado, Department of Computer Science. 

Sejnowski, T. J., & Rosenberg, C. R. (1987). Parallel networks that learn to pronounce 
English text. Complex Systems, 1, 145-168. 


