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ABSTRACT

Recently, many modifications to the McCulloch/Pitts model have been proposed
where both learning and forgetting occur. Given that the network never saturates (ceases
to function effectively due to an overload of information), the learning updates can con-
tinue indefinitely. For these networks, we need to introduce performance measures in addi-
tion to the information capacity to evaluate the different networks. We mathematically
define quantities such as the plasticity of a network, the efficacy of an information vector,
and the probability of network saturation. From these quantities we analytically compare
different networks.

1. Introduction

Work has recently been undertaken to quantitatively measure the computational
aspects of network models that exhibit some of the attributes of neural networks. The
McCulloch/Pitts model discussed in [1] was one of the earliest neural network models to be
analyzed. Some computational properties of what we call a Hopfield Associative Memory
Network (HAMN) similar to the McCulloch/Pitts model was discussed by Hopfield in [2].
The HAMN can be measured quantitatively by defining and evaluating the information
capacity as [2-6] have shown, but this network fails to exhibit more complex computational
capabilities that neural network have due to its simplified structure. The HAMN belongs
to a class of networks which we call static. In static networks the learning and recall pro-
cedures are separate. The network first learns a set of data and after learning is complete,
recall occurs. In dynamic networks, as opposed to static networks, updated learning and
associative recall are intermingled and continual. In many applications such as in adaptive
communications systems, image processing, and speech recognition dynamic networks are
needed to adaptively learn the changing information data. This paper formally develops
and analyzes some dynamic models for neural networks. Some existing models [7-10] are
analyzed, new models are developed, and measures are formulated for evaluating the per-
formance of different dynamic networks.

In [2-6], the asymptotic information capacity of the HAMN is defined and evaluated.
In [4-5], this capacity is found by first assuming that the information vectors (IVs) to be
stored have components that are chosen randomly and independently of all other com-
ponents in all IVs. The information capacity then gives the maximum number of IVs that
can be stored in the HAMN such that IVs can be recovered with high probability during
retrieval. At or below capacity, the network with high probability, successfully recovers
the desired IVs. Above capacity, the network quickly degrades and eventually fails to
recover any of the desired IVs. This phenomena is sometimes referred to as the “forgetting
catastrophe’’ [10]. In this paper we will refer to this phenomena as network saturation.

There are two ways to avoid this phenomena. The first method involves learning a
limited number of IVs such that this number is below capacity. After this learning takes
place, no more learning is allowed. Once learning has stopped, the network does not
change (defined as static) and therefore lacks many of the interesting computational
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capabilities that adaptive learning and neural network models have. The second method is
to incorporate some type of forgetting mechanism in the learning structure so that the
information stored in the network can never exceed capacity. This type of network would
be able to adapt to the changing statistics of the IVs and the network would only be able
to recall the most recently learned IVs. This paper focuses on analyzing dynamic networks
that adaptively learn new information and do not exhibit network saturation phenomena
by selectively forgetting old data. The emphasis is on developing simple models and much
of the analysis is performed on a dynamic network that uses a modified Hebbian learning
rule.

Section 2 introduces and qualitatively discusses a number of network models that are
classified as dynamic networks. This section also defines some pertinent measures for
evaluating dynamic network models. These measures include the plasticity of a network,
the probability of network saturation, and the eflicacy of stored I'Vs. A network with no
plasticity cannot learn and a network with high plasticity has interconnection weights that
exhibit large changes. The efficacy of a stored IV as a function of time is another impor-
tant parameter as it is used in determining the rate at which a network forgets informa-
tion.

In section 3, we mathematically analyze a simple dynamic network referred to as the
Attenuated Linear Updated Learning (ALUL) network that uses linear updating and a
modified Hebbian rule. Quantities introduced in section 3 are analytically determined for
the ALUL network. By adjusting the attenuation parameter of the ALUL network, the
forgetting factor is adjusted. It is shown that the optimal capacity for a large ALUL net-
work in steady state defined by (2.13,3.1) is a factor of ¢ less than the capacity of a
HAMN. This is the tradeoff that must be paid for having dynamic capabilities. We also
conjecture that no other network can perform better than this network when a worst case
criterion is used. Finally, section 4 discusses further directions for this work along with pos-
sible applications in adaptive signal processing.

2. Dynamic Associative Memory Networks

The network models discussed in this paper are based on the concept of associative
memory. Associative memories are composed of a collection of interconnected elements
that have data storage capabilities. Like other memory structures, there are two opera-
tions that occur in associative memories. In the learning operation (referred to as a write
operation for conventional memories), information is stored in the network structure. In
the recall operation (referred to as a read operation for conventional memories), informa-
tion is retrieved from the memory structure. Associative memories recall information on
the basis of data content rather than by a specific address. The models that we consider
will have learning and recall operations that are updated in discrete time with the activa-
tion state X(s) consisting of N cells that take on the values {-1,1}.

2.1. Dynamic Network Measures

General associative memory networks are described by two sets of equations. If we
let X(7) represent the activation state at time j and W(k) represent the weight matrix or
interconnection state at time k then the activation or recall equation is described by

X(5+1) = [(X(G),W(K), i>0,k>0, X(0)= X (2.1)

where X is the data probe vector used for recall. The learning algorithm or interconnec-
tion equation is described by

W(k+1) = g(V(i)0< i<k, W(0) (2.2)

where {V(f)} are the information vectors (IV)s to be stored and W(0) is the initial state of
the interconnection matrix. Usually the learning algorithm time scale is much longer than
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the recall equation time scale so that W in (2.1) can be considered time invariant. Often
(2.1) is viewed as the equation governing short term memory and (2.2) is the equation
governing long term memory. From the Hebbian hypothesis we note that the data probe
vectors should have an effect on the interconnection matrix W. If a number of data probe
vectors recall an IV V(7), the strength of recall of the IV V(i) should be increased by
appropriate modification of W, If another IV is never recalled, it should gradually be for-
gotten by again adjusting terms of W. Following the analysis in [4,5] we assume that all
components of IVs introduced are independent and identically distributed Bernoulli random
variables with the probability of a 1 or -1 being chosen equal to é.

Our analysis focuses on learning algorithms. Before describing some dynamic learning
algorithms we present some definitions. A network is defined as dynamic if given some
period of time the rate of change of W is never nonzero. In addition we will primarily dis-
cuss networks where learning is gradual and updated at discrete times as shown in (2.2).
By gradual, we want networks where each update usually consists of one IV being learned
and /or forgotten. IVs that have been introduced recently should have a high probability of
recovery. The probability of recall for one IV should also be a monotonic decreasing func-
tion of time, given that the IV is not repeated. The networks that we consider should also
have a relatively low probability of network saturation.

Quantitatively, we let e(k,/,7) be the event that an IV introduced at time [ can be
recovered at time k& with a data probe vector which is of Hamming distance ¢ from the
desired IV. The efficacy of network recovery is then given as p(k,l,i) = Pr(e(k,!,7)). In
the analysis performed we say a a vector V can recover V(I), if V(I) = A(V) where A(e)
is a synchronous activation update of all cells in the network. The capacity for dynamic
networks is then given by

C(k,i,e) = maxm>Pr(r(e(k,/,i),0<I<k)=m)>1—-¢ 0< :'<% (2.3)

where r(X) gives the cardinality of the number of events that occur in the set X. Closely
related to the capacity of a network is network saturation. Saturation occurs when the
network is overloaded with IVs such that few or none of the IVs can be successfully
recovered. When a network at time O starts to learn IVs, at some time { <; we have that
C(l,5,€)> C(7,6,6). For k>! the network saturation probability is defined by S(k,m)
where S describes the probability that the network cannot recover m IVs.

Another important measure in analyzing the performance of dynamic networks is the
plasticity of the interconnections of the weight matrix W. Following definitions that are
similar to [10], define

Z i VAR{ W,-“;(k) = Wl'.:'(k_l)}

hk) = T# =1 9.4
(k) e (2.4
as the incremental synaptic intensity and
N
Ez VAR{W; ;(k)}
H(k) = Z2=° (2.5)

N(NA)
as the cumulative synaptic intensity. I'rom these definitions we can define the plasticity of
the network as

h(k)
H(k)
When network plasticity is zero, the network does not change and no learning takes place.
When plasticity is high, the network interconnections exhibit large changes.

P(k) = (2.6)
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When analyzing dynamic networks we are often interested if the network reaches a
steady state. We say a dynamic network reaches steady state if

lim H(k) = H (2.7)

where H is a finite nonzero constant. If the IVs have stationary statistics and given that
the learning operations are time invariant, then if a network reaches steady state, we have
that

Jim P(k) = P (2.8)

where P is a finite constant. It is also easily verified from (2.6) that if the plasticity con-
verges to a nonzero constant in a dynamic network, then given the above conditions on the
IVs and the learning operations the network will eventually reach steady state.

Let us also define the synaptic state at time & for activation state V as
s(k, V)= W(k)V (2.9)
From the synaptic state, we can define the SNR of V, which we show in section 3 is
closely related to the efficacy of an IV and the capacity of the network.
(E(si(k, V)

SNR(k,V,i) = VAR(s;(k,V))

(2.10)

Another quantity that is important in measuring dynamic networks is the complexity
of implementation. Quantities dealing with network complexity are discussed in [12] and
this paper focuses on networks that are memoryless. A network is memoryless if (2.2) can
be expressed in the following form:

W(k+1)= ¢ " (W(k),V(F)) (2.11)

Networks that are not memoryless have the disadvantage that all IVs need to be saved dur-
ing all learning updates. The complexity of implementation is greatly increased in terms of
space complexity and very likely increased in terms of time complexity.

2.2. Examples of Dynamic Associative Memory Networks

The previous subsection discussed some quantities to measure dynamic networks.
This subsection discusses some examples of dynamic associative memory networks and
qualitatively discusses advantages and disadvantages of different networks. All the net-
works considered have the memoryless property.

The first network that we discuss is described by the [ollowing difference equation
W(k+1)= a(k)W(k)+ b(k)L(V(K)) k>1 (2.12)

with W(0) being the initial value of weights before any learning has taken place. Networks
with these learning rules will be labeled as Linear Updated Learning (LUL) networks and
in addition if 0<a(k)<1 for k>0 the network is labeled as an Attenuated Linear Updated
Learning (ALUL) network. We will primarily deal with ALUL where 0<a(k)<1 and b(k)
do not depend on the position in W. This model is a specialized version of Grossberg’s
Passive Decay LTM equation discussed in [11]. If the learning algorithn is of the correla-
tion type then

L(V(k))= V(k)V()T =1 k>1 (2.13)

This learning scheme has similarities to the marginalist learning schemes introduced in [10].
One of the key parameters in the ALUL network is the value of the attenuation coeflicient
a. From simulations and intuition we know that if the attenuation coefficient is to high,
the network will saturate and if the attenuation parameter is to low, the network will





















