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ABSTRACT 

Information retrieval in a neural network is viewed as a procedure in 
which the network computes a "most probable" or MAP estimate of the unk
nown information. This viewpoint allows the class of probability distributions, 
P, the neural network can acquire to be explicitly specified. Learning algorithms 
for the neural network which search for the "most probable" member of P can 
then be designed. Statistical tests which decide if the "true" or environmental 
probability distribution is in P can also be developed. Example applications of 
the theory to the highly nonlinear back-propagation learning algorithm, and the 
networks of Hopfield and Anderson are discussed. 

INTRODUCTION 

A connectionist system is a network of simple neuron-like computing 
elements which can store and retrieve information, and most importantly make 
generalizations. Using terminology suggested by Rumelhart & McClelland 1, 
the computing elements of a connectionist system are called units, and each unit 
is associated with a real number indicating its activity level. The activity level 
of a given unit in the system can also influence the activity level of another unit. 
The degree of influence between two such units is often characterized by a 
parameter of the system known as a connection strength. During the informa
tion retrieval process some subset of the units in the system are activated, and 
these units in turn activate neighboring units via the inter-unit connection 
strengths. The activation levels of the neighboring units are then interpreted as 

t Correspondence should be addressed to the author at the Department 
of Psychology, Stanford University, Stanford, California, 94305, USA. 

© American Institute of Physics 1988 



the retrieved information. During the learning process, the values of the inter
unit connection strengths in the system are slightly modified each time the units 
in the system become activated by incoming information. 

DERIV ATION OF TIIE SUBJECITVE PF 

Smolensky 2 demonstrated how the class of possible probability distri
butions that could be represented by a Hannony theory neural network model 
can be derived from basic principles. Using a simple variation of the arguments 
made by Smolen sky , a procedure for deriving the class of probability distribu
tions associated with any connectionist system whose information retrieval 
dynamics can be summarized by an additive energy function is briefly sketched. 
A rigorous presentation of this proof may be found in Golden 3. 

Let a sample space, Sp, be a subset of the activation pattern state space, 
Sd, for a particular neural network model. For notational convenience, define the 
term probability function (pf) to indicate a function that assigns numbers 
between zero and one to the elements of Sp. For discrete random variables, the 
pf is a probability mass function. For continuous random variables, the pf is a 
probability density function. Let a particular stationary stochastic environment 
be represented by the scalar-valued pf, Pe(X)' where X is a particular activation 
pattern. The pf, Pe(X), indicates the relative frequency of occurrence of activa
tion pattern X in the network model's environment. A second pf defined with 
respect to sample space Sp also must be introduced. This probability function, 
ps(X), is called the network's subjective pf. The pf Ps(X) is interpreted as the 
network's belief that X will occur in the network's environment. 

The subjective pf may be derived by making the assumption that the 
information retrieval dynamical system, D s' is optimal. That is, it is assumed 
that D s is an algorithm designed to transform a less probable state X into a more 
probable state X* where the probability of a state is defined by the subjective pf 
ps(X;A), and where the elements of A are the connection strengths among the 
units. Or in traditional engineering terminology, it is assumed that D s is a MAP 
(maximum a posteriori) estimation algorithm. The second assumption is that an 
energy function, V(X), that is minimized by the system during the information 
retrieval process can be found with an additivity property. The additivity pro
perty says that if the neural network were partitioned into two physically 
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unconnected subnetworks, then Vex) can be rewritten as VI (Xl) + V 2(X2) 
where VIis the energy function minimized by the first subnetwork and V 2 is 
the energy function minimized by the second subnetwork. The third assumption 
is that Vex) provides a sufficient amount of information to specify the probabil
ity of activation pattern X. That is, p (X) = G(V(X» where G is some continu
ous function. And the final assumpti;n (following Smolen sky 2) is that statisti
cal and physical independence are equivalent. 

To derive ps(X), it is necessary to characterize G more specifically. Note 
that if probabilities are assigned to activation patterns such that physically 
independent substates of the system are also statistically independent, then the 
additivity property of V(X) forces G to be an exponential function since the onz 
continuous function that maps addition into multiplication is the exponential . 
After normalization and the assignment of unity to an irrelevant free parameter 
2, the unique subjective pf for a network model that minimizes V(X) during the 
information retrieval process is: 

p s(X;A) = Z -1 exp [ - V (X;A)] (1) 

Z = Jexp[ - V (X;A)]dX (2) 

provided that Z < C < 00. Note that the integral in (2) is taken over sp. Also note 
that the pf, Ps' and samfle space, Sp, specify a Markov Random Field since (1) 
is a Gibbs distribution . 

Example 1: Subjective pfs for associative back-propagation networks 

The information retrieval equation for an associative back-propagation 6 
network can be written in the form ~[I;A] where the elements of the vector 0 
are the activity levels for the output units and the elements of the vector I are the 
activity levels for the input units. The parameter vector A specifies the values 



of the "connection strengths" among the units in the system. The function cl> 
specifies the architecture of the network. 

A natural additive energy function for the information retrieval dynam
ics of the least squares associative back-propagation algorithm is: 

V(O) = I ()-.4>(I;A) 12, (3) 

If Sp is defined to be a real vector space such that 0 esp, then direct substitu
tion of V(O) for V iX;A) into (1) and (2) yields a multivariate Gaussian density 
function with mean cl>(I;A) and covariance matrix equal to the identity matrix 
multiplied by 1!2. This multivariate Gaussian density function is ps(OII;A). 
That is, with respect to ps(OII;A), information retrieval in an associative back
propagation network involves retrieving the "most probable" output vector, 0, 
for a given input vector, I. 

Example 2: Subjective pis/or Hopfield and BSB networks. 

The Hopfield 7 and BSB model 8,9 neural network models minimize the 

following energy function during information retrieval: 

T Vex) =-X MX (4) 

where the elements of X are the activation levels of the units in the system. and 
the elements of M are the connection strengths among the units. Thus, the sub
jective pf for these networks is: 
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X Z-l T P s< ) = exp [X M X] where Z = l:exp [XT M X] (5) 

where the summation is taken over Sp. 

APPLICATIONS OF TIlE TIIEORY 

If the subjective pf for a given connectionist system is known, then tradi
tional analyses from the theory of statistical inference are immediately applica
ble. In this section some examples of how these analyses can aid in the design 
and analysis of neural networks are provided. 

Evaluating Learning Algorithms 

Learning in a neural network model involves searching for a set of con
nection strengths or parameters that obtain a global minimum of a learning 
energy function. The theory proposed here explicitly shows how an optimal 
learning energy function can be constructed using the model's subjective pf and 
the environmental pf. In particular, optimal learning is defined as searching for 
the most probable connection strengths, given some set of observations (sam
ples) drawn from the environmental pf. Given some mild restrictions upon the 
fonn of the a priori pf associated with the connection strengths, and for a 
sufficiently large set of observations, estimating the most probable connection 
strengths (MAP estimation) is equivalent to maximum likelihood estimation 10 

A well-known result 11 is that if the parameters of the subjective pf are 
represented by the parameter vector A, then the maximum likelihood estimate of 
A is obtained by finding the A * that minimizes the function : 



E(A) =- <.LOG [p s(X;A)]> (6) 

where < > is the expectation operator taken with respect to the environmental pf. 
Also note that (6) is the Kullback-Leibler 12 distance measure plus an irrelevant 
constant. Asymptotically, E(A) is the logarithm of the probability of A given 
some set of observations drawn from the environmental pf. 

Equation (6) is an important equation since it can aid in the evaluation 
and design of optimal learning algorithms. Substitution of the multivariate 
Gaussian associated with (3) into (6) shows that the back-propagation algorithm 
is doing gradient descent upon the function in (6). On the other hand, substitu
tion of (5) into (6) shows that the Hebbian and Widrow-Hoff learning rules pro
posed for the Hopfield and BSB model networks are not doing gradient descent 
upon (6). 

Evaluating Network Architectures 

The global minimum of ~6) occurs if and only if the subjective and 
environmental pfs are equivalent 2. Thus, one crucial issue is whether any set 
of connection strengths exists such that the neural network's subjective pf can 
be made equivalent to a given environmental pf. If no such set of connection 
strengths exists, the subjective pf, p s' is defined to be misspecified. White 11 
and Lancaster 13 have introduced a statistical test designed to re~ct the null 
hypothesis that the subjective pf, Ps' is not misspecified. Golden suggests a 
version of this test that is suitable for subjective pfs with many parameters. 
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