
Neural Network Implementation Approaches
for the

Connection Machine

Nathan H. Brown, Jr.

MRJlPerkin Elmer, 10467 White Granite Dr. (Suite 304), Oakton, Va. 22124

ABSlRACf

127

The SIMD parallelism of the Connection Machine (eM) allows the construction of
neural network simulations by the use of simple data and control structures. Two
approaches are described which allow parallel computation of a model's nonlinear
functions, parallel modification of a model's weights, and parallel propagation of a
model's activation and error. Each approach also allows a model's interconnect
structure to be physically dynamic. A Hopfield model is implemented with each
approach at six sizes over the same number of CM processors to provide a performance
comparison.

INTRODUCflON

Simulations of neural network models on digital computers perform various
computations by applying linear or nonlinear functions, defined in a program, to
weighted sums of integer or real numbers retrieved and stored by array reference. The
numerical values are model dependent parameters like time averaged spiking frequency
(activation), synaptic efficacy (weight), the error in error back propagation models, and
computational temperature in thermodynamic models. The interconnect structure of a
particular model is implied by indexing relationships between arrays defined in a
program. On the Connection Machine (CM), these relationships are expressed in
hardware processors interconnected by a 16-dimensional hypercube communication
network. Mappings are constructed to defme higher dimensional interconnectivity
between processors on top of the fundamental geometry of the communication
network. Parallel transfers are defined over these mappings. These mappings may be
dynamic. CM parallel operations transform array indexing from a temporal succession
of references to memory to a single temporal reference to spatially distributed
processors.

Two alternative approaches to implementing neural network simulations on the CM
are described. Both approaches use "data parallelism" 1 provided by the *Lisp virtual
machine. Data and control structures associated with each approach and performance
data for a Hopfield model implemented with each approach are presented.

DATA STRUCTURES

The functional components of a neural network model implemented in *Lisp are
stored in a uniform parallel variable (pvar) data structure on the CM. The data structure
may be viewed as columns of pvars. Columns are given to all CM virtual processors.
Each CM physical processor may support 16 virtual processors. In the fust approach
described, CM processors are used to represent the edge set of a models graph
structure. In the second approach described, each processor can represent a unit, an
outgoing link, or an incoming link in a model's structure. Movement of activation (or
error) through a model's interconnect structure is simulated by moving numeric values

© American Institute of Physics 1988

128

over the eM's hypercube. Many such movements can result from the execution of a
single CM macroinstruction. The CM transparently handles message buffering and
collision resolution. However, some care is required on the part of the user to insure
that message traffic is distributed over enough processors so that messages don't stack
up at certain processors, forcing the CM to sequentially handle large numbers of
buffered messages. Each approach requires serial transfers of model parameters and
states over the communication channel between the host and the CM at certain times in a
simulation.

The first approach, "the edge list approach," distributes the edge list of a network
graph to the eM, one edge per CM processor. Interconnect weights for each edge are
stored in the memory of the processors. An array on the host machine stores the
current activation for all units. This approach may be considered to represent abstract
synapses on the eM. The interconnect structure of a model is described by product
sets on an ordered pair of identification (id) numbers, rid and sid. The rid is the id of
units receiving activation and sid the id of units sending activation. Each id is a unique
integer. In a hierarchical network, the ids of input units are never in the set of rids and
the ids of output units are never in the set of sids. Various set relations (e.g. inverse,
reflexive, symmetric, etc.) defined over id ranges can be used as a high level
representation of a network's interconnect structure. These relations can be translated
into pvar columns. The limits to the interconnect complexity of a simulated model are
the virtual processor memory limits of the CM configuration used and the stack space
~uired by functions used to compute the weighted sums of activation. Fig. 1 shows a
R -> R2 -> R4 interconnect structure and its edge list representation on the CM.

6 7 8 9

:z 3

eM PROCESSOR 0 1 2 3 4 5 6 7 8 9 1 0111213

:~ (~·,';)H f H H H f ff if
SAcr (8 j) 1 2 3 1 2 3 4 5 4 5 4 5 4 5

Fig. 1. Edge List Representation of a R3_> R2 -> R4 Interconnect Structure

This representation can use as few as six pvars for a model with Hebbian
adaptation: rid (i), sid (j), interconnect weight (wij), ract (ai), sact (aj), and learn rate

(11)· Error back propagation requires the addition of: error (ei), old interconnect

weight (wij(t-l», and the momentum term (ex). The receiver and sender unit
identification pvars are described above. The interconnect weight pvar stores the
weight for the interconnect. The activation pvar, sact, stores the current activation, aj'
transfered to the unit specified by rid from the unit specified by sid. The activation
pvar, ract, stores the current weighted activation ajwij- The error pvar stores the error
for the unit specified by the sid. A variety of proclaims (e.g. integer, floating point,
boolean, and field) exist in *Lisp to define the type and size ofpvars. Proclaims
conserve memory and speed up execution. Using a small number of pvars limits the

129

amount of memory used in each CM processor so that maximum virtualization of the
hardware processors can be realized. Any neural model can be specified in this fashion.
Sigma-pi models require multiple input activation pvars be specified. Some edges may
have a different number of input activation pvars than others. To maintain the uniform
data structure of this approach a tag pvar has to be used to determine which input
activation pvars are in use on a particular edge.

The edge list approach allows the structure of a simulated model to "physically"
change because edges may be added (up to the virtual processor limit), or deleted at any
time without affecting the operation of the control structure. Edges may also be placed
in any processor because the subselection (on rid or sid) operation performed before a
particular update operation insures that all processors (edges) with the desired units are
selected for the update.

The second simulation approach, "the composite approach," uses a more
complicated data structure where units, incoming links, and outgoing links are
represented. Update routines for this approach use parallel segmented scans to form
the weighted sum of input activation. Parallel segmented scans allow a MIMD like
computation of the weighted sums for many units at once. Pvar columns have unique
values for unit, incoming link, and outgoing link representations. The data structures
for input units, hidden units, and output units are composed of sets of the three pvar
column types. Fig. 2 shows the representation for the same model as in Fig. 1
implemented with the composite approach.

2 3 4 5 6 7 8 9

o 1 2 3 4 5 6 7 8 9 101112 1314151617181920212223242526272829303132333435

c
o rr, f~ ~\'~~Ii~ +----+ ~~+-t+*~ IO~ O.~~ II I(II I(

loll ~ t -~. - ~

c--•. c--•.

I

Fig. 2. Composite Representation of a R3 -> R2 -> R4 Interconnect Structure

In Fig. 2, CM processors acting as units, outgoing links, and incoming links are
represented respectively by circles, triangles, and squares. CM cube address pointers
used to direct the parallel transfer of activation are shown by arrows below the
structure. These pointers defme the model interconnect mapping. Multiple sets of
these pointers may be stored in seperate pvars. Segmented scans are represented by
operation-arrow icons above the structure. A basic composite approach pvar set for a
model with Hebbian adaptation is: forward B, forward A, forward transfer address,

interconnect weight (Wij), act-l (ai), act-2 (aj), threshold, learn rate (Tl), current unit id
(i), attached unit id U), level, and column type. Back progagation of error requires the
addition of: backward B, backward A, backward transfer address, error (ei), previous

interconnect weight (Wij(t-l», and the momentum tenn (ex). The forward and
backward boolean pvars control the segmented scanning operations over unit
constructs. Pvar A of each type controls the plus scanning and pvar B of each type
controls the copy scanning. The forward transfer pvar stores cube addresses for

130

forward (ascending cube address) parallel transfer of activation. The backward transfer
pvar stores cube addresses for backward (descending cube address) parallel transfer of
error. The interconnect weight, activation, and error pvars have the same functions as
in the edge list approach. The current unit id stores the current unit's id number. The
attached unit id stores the id number of an attached unit. This is the edge list of the
network's graph. The contents of these pvars only have meaning in link pvar columns.
The level pvar stores the level of a unit in a hierarchical network. The type pvar stores
a unique arbitrary tag for the pvar column type. These last three pvars are used to
subselect processor ranges to reduce the number of processors involved in an
operation.

Again, edges and units can be added or deleted. Processor memories for deleted
units are zeroed out. A new structure can be placed in any unused processors. The
level, column type, current unit id, and attached unit id values must be consistent with
the desired model interconnectivity.

The number of CM virtual processors required to represent a given model on the
CM differs for each approach. Given N units and N(N-1) non-zero interconnects (e.g.
a symmetric model), the edge list approach simply distributes N(N-1) edges to N(N-1)
CM virtual processors. The composite approach requires two virtual processors for
each interconnect and one virtual processor for each unit or N +2 N (N -1) CM virtual
processors total. The difference between the number of processors required by the two
approaches is N2. Table I shows the processor and CM virtualization requirements for
each approach over a range of model sizes.

TABLE I Model Sizes and CM Processors Required

Run No. Grid Size Number of Units Edge List Quart CM Virt. Procs. Virt. LeveL
N(N-1)

1 82 64 4032 8192 0
2 92 81 6480 8192 0
3 112 121 14520 16384 0
4 132 169 28392 32768 2
5 162 256 65280 65536 4
6 192 361 129960 131072 8

Run No. Grid Size Number of Units Composite Quart CM Virt. Procs. Virt. LeveL
N+2N(N-1)

7 82 64 8128 8192 0
8 92 81 13041 16384 0
9 112 121 29161 32768 2

10 132 169 56953 65536 4
11 162 256 130816 131072 8
12 192 361 260281 262144 16

131

CONTROL STRUCTURES

The control code for neural network simulations (in *Lisp or C*) is stored and
executed sequentially on a host computer (e.g. Symbolics 36xx and V AX 86xx)
connected to the CM by a high speed communication line. Neural network simulations
executed in *Lisp use a small subset of the total instruction set: processor selection
reset (*all), processor selection (*when), parallel content assignment (*set), global
summation (*sum), parallel multiplication (*!!), parallel summation (+! I), parallel
exponentiation (exp! I), the parallel global memory references (*pset) and (pref! I), and
the parallel segmented scans (copy!! and +!!). Selecting CM processors puts them in a
"list of active processors" (loap) where their contents may be arithmetically manipulated
in parallel. Copies of the list of active processors may be made and used at any time. A
subset of the processors in the loap may be "subselected" at any time, reducing the loap
contents. The processor selection reset clears the current selected set by setting all
processors as selected. Parallel content assignment allows pvars in the currently
selected processor set to be assinged allowed values in one step. Global summation
executes a tree reduction sum across the CM processors by grid or cube address for
particular pvars. Parallel multiplications and additions multiply and add pvars for all
selected CM processors in one step. The parallel exponential applies the function, eX, to
the contents of a specified pvar, x, over all selected processors. Parallel segmented
scans apply two functions, copy!! and +!!, to subsets ofCM processors by scanning
across grid or cube addresses. Scanning may be forward or backward (Le. by
ascending or descending cube address order, respectively).

Figs. 3 and 4 show the edge list approach kernels required for Hebbian learning for
a R2 -> R2 model. The loop construct in Fig. 3 drives the activation update

(1)

operation. The usual loop to compute each weighted sum for a particular unit has been
replaced by four parallel operations: a selection reset (*all), a subselection of all the
processors for which the particular unit is a receiver of activation (*when (=!! rid (!!
(1+ u»», a parallel multiplication (*!! weight sact), and a tree reduction sum (*sum
...). Activation is spread for a particular unit, to all others it is connected to, by:
storing the newly computed activation in an array on the host, then subselecting the
processors where the particular unit is a sender of activation (*when (=!! sid (!! (1 +
u»», and broadcasting the array value on the host to those processors.

(dotimes (u 4)
(*all (*when (=!! rid (!! (1+ u»)

(setf (aref activation u)
(some-nonlinearity (*sum (*!! weight sact»»

(*set ract (!! (aref activation u»)
(*all (*when (=!! sid (!! (1+ u»)

(*set sact (!! (aref activation u»»»

Fig. 3. Activation Update Kernel for the Edge Lst Approach.

Fig. 4 shows the Hebbian weight update kernel

132

(2)

(*all
(*set weight

(*!! learn-rate ract sact»»

Fig. 4. Hebbian Weight Modification Kernel for the Edge List Approach

The edge list activation update kernel is essentially serial because the steps involved can
only be applied to one unit at a time. The weight modification is parallel. For error
back propagation a seperate loop for computing the errors for the units on each layer of
a model is required. Activation update and error back propagation also require transfers
to and from arrays on the host on every iteration step incurring a concomitant overhead.

Other common computations used for neural networks can be computed in parallel
using the edge list approach. Fig. 5 shows the code kernel for parallel computation of
Lyapunov engergy equations

(3)

where i= 1 to number of units (N).

(+ (* -.5 (*sum (*!! weight ract sact») (*sum (*!! input sact»)

Fig. 5. Kernel for Computation of the Lyapunov Energy Equation

Although an input pvar, input, is defined for all edges, it is only non-zero for those
edges associated with input units. Fig. 6 shows the pvar structure for parallel
computation of a Hopfield weight prescription, with segmented scanning to produce the
weights in one step,

W· · -l:S I(2ar·-I)(2ar·-I) IJ - r= 1 J (4)

where wii=O, Wij=Wjh and r=I to the number of patterns, S, to be stored.

seg t n n t n n
ract vII V21 ... VSI vII V2I ... VSI .. .
sact V I2 v22' .. VS2 v13 v23 ... VS3 .. .
weight wI2 w13

Fig. 6. Pvar Structure for Parallel Computation QfHopfield Weight Prescription

Fig. 7 shows the *Lisp kernel used on the pvar structure in Fig. 6.

(set weight
(scan '+!! (*!! (-!! (*!! ract (!! 2» (!! 1» (-!! (*!! sact (!! 2» (!! 1»»

:segment-pvar seg :inc1ude-self t)

Fig. 7. Parallel Computation of Hopfield Weight Prescription

133

The inefficiencies of the edge list activation update are solved by the updating
method used in the composite approach. Fig. 8 shows the *Lisp kernel for activation
update using the composite approach. Fig. 9 shows the *Lisp kernel for the Hebbian
learning operation in the composite approach.

(*a1l
(*when (=!! level (!! 1»

(*set act (scan!! act-I 'copy!! :segment-pvar forwardb :include-self t»
(*set act (*!! act-l weight»
(*when (=!! type (!! 2» (*pset :overwrite act-l act-I ftransfer»)

(*when (=!! level (!! 2»

(*all

(*set act (scan!! act-l '+!! :segment-pvar forwarda :include-self t»
(*when (=!! type (!! 1» (some-nonlinearity!! act-I»»

Fig. 8. Activation Update Kernel for the Composite Approach

(*set act-l (scan!! act-I 'copy!! :segment-pvar forwardb
:include-self t»

(*when (=!! type (!! 2»
(*set act-2 (pref!! act-I btransfer»)
(*set weight

(+!! weight
(*!! learn-rate act-l act-2»»)

Fig. 9. Hebbian Weight Update Kernel for the Composite Approach

It is immediately obvious that no looping is invloved. Any number of interconnects
may be updated by the proper subselection. However, the more subselection is used
the less efficient the computation becomes because less processors are invloved.

COMPLEXITY ANALYSIS

The performance results presented in the next section can be largely anticipated
from an analysis of the space and time requirements of the CM implementation
approaches. For simplicity I use a Rn -> Rn model with Hebbian adaptation. The
oder of magnitude requirements for activation and weight updating are compared for
both CM implementation approaches and a basic serial matrix arithmetic approach.

F~r the given model the space requirements on a conventional serial machine are
2n+n locations or O(n2). The growth of the space requirement is dominated by the
nxn weight matrix. defining the system interconnect structure. The edge list appro~ch
uses six pvars for each processor and uses nxn processors for the mapping, or 6n
locations or O(n2). The composite approach uses 11 pvars. There are 2n processors
for units and 2n2 proces~ors for interconnects in the given model. The composite
approach uses 11(2n+2n) locations or O(n2). The CM implementations take up
roughly the same space as the serial implementation, but the space for the serial
implementation is composed of passive memory whereas the space for the CM
implementations is composed of interconnected processors with memory .

The time analysis for the approaches compares the time order of magnitudes to
compute the activation update (1) and the Hebbian weight update (2). On a serial

134

machine, the n weighted sums computed for the ac~vation update require n2
multiplicationsffd n(n-l) additions. There are 2n -n operations or time order of
magnitude O(n ~ The time order of magnitude for the weight matrix update is O(n2)
since there are n weight matrix elements.

The edge list approach forms n weighted sums by performing a parallel product of
all of the weights and activations in the model, (*!! weight sact), and then a tree
reduction sum, (*sum ...), of the products for the n uni~ (see Fig. 4). There are
1 +n(nlog2n) operations or time order of magnitude O(n). This is the same order of
magnitude as obtained on a serial machine. Further, the performance of the activation
update is a function of the number of interconnects to be processed.

The composite approach forms n weighted sums in nine steps (see Fig. 8): five
.selection operations; the segmented copy scan before the parallel multiplication; the
parallel multiplication; the parallel transfer of the products; and the segmented plus
scan, which forms the n sums in one step. This gives the composite activation update a
time order of magnitude O(1). Performance is independent of the number of
interconnects processed. The next section shows that this is not quite true.

The n2 weights in the model can be updated in three parallel steps using the edge
list approach (see Fig. 4). The n2 weights in the model can be updated in eight parallel
steps using the composite approach (see Fig. 9). In either case, the weight update
operation has a time order of magnitude 0(1).

The time complexity results obtained for the composite approach apply to
computation of the Lyaponov energy equation (3) and the Hopfield weighting
prescription (4), given that pvar structures which can be scanned (see Figs. 1 and 6) are
used. The same operations performed serially are time order of magnitude 0(n2).

The above operations all incur a one time overhead cost for generating the addresses
in the pointer pvars, used for parallel transfers, and arranging the values in segments
for scanning. What the above analysis shows is that time complexity is traded for
space complexity. The goal of CM programming is to use as many processors as
possible at every step.

PERFORMANCE COMPARISON

Simulations of a Hopfield spin-glass model2 were run for six different model sizes
over the same number (16,384) of physical CM processors to provide a performance
comparison between implementation approaches. The Hopfield network was chosen
for the performance comparison because of its simple and well known convergence
dynamics and because it uses a small set of pvars which allows a wide range of
network sizes (degrees of virtualization) to be run. Twelve treaments are run. Six with
the edge list approach and six with the composite approach. Table 3-1 shows the
model sizes run for each treatment. Each treatment was run at the virtualization level
just necessary to accomodate the number of processors required for each simulation.

Two exemplar patterns are stored. Five test patterns are matched against the two
exemplars. Two test patterns have their centers removed, two have a row and column
removed, and one is a random pattern. Each exemplar was hand picked and tested to
insure that it did not produce cross-talk. The number of rows and columns in the
exemplars and patterns increase as the size of the networks for the treatments increases.

135

Since the performance of the CM is at issue, rather than the performance of the network
model used, a simple model and a simple pattern set were chosen to minimize
consideration of the influence of model dynamics on performance.

Performance is presented by plotting execution speed versus model size. Size is
measured by the number of interconnects in a model. The execution speed metric is
interconnects updated per second, N*(N-l)/t, where N is the number of units in a
model and t is the time used to update the activations for all of the units in a model. All
of the units were updated three times for each pattern. Convergence was determined
by the output activation remaining stable over the fmal two updates. The value of t for
a treatment is the average of 15 samples of t. Fig. 10 shows the activation update cycle
time for both approaches. Fig. 11 shows the interconnect update speed plots for both
approaches. The edge list approach is plotted in black. The composite approach is
plotted in white. The performance shown excludes overhead for interpretation of the
*Lisp instructions. The model size categories for each plot correspond to the model
sizes and levels of eM virtualization shown in Table I.

i.p.s.

Activation Update Cycle Time vs Model Size

1 .6
1 .4

1.2

sees O.B

0.6
0.4
0.2 •

•
•

•

o
OO ___ ~~~ __ ~O~ __ ~O~ __ .O __ ~

1 2 3 4 5 6
Model Size

Fig. 10. Activation Update Cycle Times

Interconnect Update Speed Comparison
Edge Ust Approach vs. Composite Approach

2000000}
1500000 0

0
0

1000000 0 0

500000t 0

• • • • o· •
1 2 3 4 5 6

Model Size

Fig. 11. Edge List Interconnect Update Speeds

Fig. 11 shows an order of magnitude performance difference between the
approaches and a roll off in performance for each approach as a function of the number
of virtual processors supported by each physical processor. The performance tum
around is at 4x virtualization for the edge list approach and 2x virtualization for the
composite approach.

136

CONCLUSIONS

Representing the interconnect structure of neural network models with mappings
defined over the set of fine grain processors provided by the CM architecture provides
good performance for a modest programming effort utilizing only a small subset of the
instructions provided by *Lisp. Further, the perfonnance will continue to scale up
linearly as long as not more than 2x virtualization is required. While the complexity
analysis of the composite activation update suggests that its performance should be
independent of the number of interconnects to be processed, the perfonnance results
show that the performance is indirectly dependent on the number of interconnects to be
processed because the level of virtualization required (after the physical processors are
exhausted) is dependent on the number of interconnects to be processed and
virtualization decreases performance linearly. The complexity analysis of the edge list
activation update shows that its perfonnance should be roughly the same as serial
implementations on comparable machines. The results suggest that the composite
approach is to be prefered over the edge list approach but not be used at a virtualization
level higher than 2x.

The mechanism of the composite activation update suggest that hierarchical
networks simulated in this fashion will compare in perfonnance to single layer
networks because the parallel transfers provide a type of pipeline for activation for
synchronously updated hierarchical networks while providing simultaneous activation
transfers for asynchronously updated single layer networks. Researchers at Thinking
Machines Corporation and the M.I.T. AI Laboratory in Cambridge Mass. use a similar
approach for an implementation of NETtalk. Their approach overlaps the weights of
connected units and simultaneously pipelines activation forward and error backward.3

Perfonnance better than that presented can be gained by translation of the control
code from interpreted *Lisp to PARIS and use of the CM2. In addition to not being
interpreted, PARIS allows explicit control over important registers that aren't
accessable through *Lisp. The CM2 will offer a number of new features which will
enhance perfonnance of neural network simulations: a *Lisp compiler, larger
processor memory (64K), and floating point processors. The complier and floating
point processors will increase execution speeds while the larger processor memories
will provide a larger number of virtual processors at the performance tum around points
allowing higher perfonnance through higher CM utilization.

REFERENCES

1. "Introduction to Data Level Parallelism," Thinking Machines Technical Report
86.14, (April 1986).

2. Hopfield, J. J., "Neural networks and physical systems with emergent collective
computational abilities," Proc. Natl. Acad. Sci., Vol. 79, (April 1982), pp. 2554-2558.

3. Blelloch, G. and Rosenberg, C. Network Learning on the Connection Machine,
M.I.T. Technical Report, 1987.

