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Abstract 

A general method for deriving backpropagation algorithms for networks 
with recurrent and higher order networks is introduced. The propagation of activation 
in these networks is determined by dissipative differential equations. The error signal 
is backpropagated by integrating an associated differential equation. The method is 
introduced by applying it to the recurrent generalization of the feedforward 
backpropagation network. The method is extended to the case of higher order 
networks and to a constrained dynamical system for training a content addressable 
memory. The essential feature of the adaptive algorithms is that adaptive equation has 
a simple outer product form. 

Preliminary experiments suggest that learning can occur very rapidly in 
networks with recurrent connections. The continuous formalism makes the new 
approach more suitable for implementation in VLSI. 

Introduction 

One interesting class of neural networks, typified by the Hopfield neural 
networks (1,2) or the networks studied by Amari(3,4) are dynamical systems with three 
salient properties. First, they posses very many degrees of freedom, second their 
dynamics are nonlinear and third, their dynamics are dissipative. Systems with these 
properties can have complicated attractor structures and can exhibit computational 
abilities. 

The identification of attractors with computational objects, e.g. memories at d 
rules, is one of the foundations of the neural network paradigm. In this paradigl n, 
programming becomes an excercise in manipulating attractors. A learning algorithm is 
a rule or dynamical equation which changes the locations of fixed points to encode 
information. One way of doing this is to minimize, by gradient descent, some 
function of the system parameters. This general approach is reviewed by Amari(4) 
and forms the basis of many learning algorithms. The formalism described here is a 
specific case of this general approach. 

The purpose of this paper is to introduce a fonnalism for obtaining adaptive 
dynamical systems which are based on backpropagation(5,6,7). These dynamical 
systems are expressed as systems of coupled first order differential equations. The 
formalism will be illustrated by deriving adaptive equations for a recurrent network 
with first order neurons, a recurrent network with higher order neurons and finally a 
recurrent first order associative memory. 

Example 1: Recurrent backpropagation with first order units 

Consider a dynamical system whose state vector x evolves according to the 
following set of coupled differential equations 
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dx·/dt = -x' + g'(LW"X') + I· I 1 1. IJ J I 
J 

(1) 

where i=l, ... ,N. The functions g' are assumed to be differentiable and may have 
different forms for various populations of neurons. In this paper we shall make no 
other requirements on gi' In the neural network literature it is common to take these 
functions to be Sigmoid shaped functions. A commonly used form is the logistic 
function, 

(2) 

This form is biologically motivated since it attempts to account for the refractory phase 
of real neurons. However, it is important to stress that there is nothing in the 
mathematical content of this paper which requires this form -- any differentiable 
function will suffice in the formalism presented in this paper. For example, a choice 
which may be of use in signal processing is sin(~). 

A necessary condition for the learning algorithms discussed here to exist is that the 
system posesses stable isolated attractors, i.e. fixed points. The attractor structure of 
(1) is the same as the more commonly used equation 

du/dt = -ui +~Wijg(Uj) + Ki' (3) 
J 

Because (1) and (3) are related by a simple linear transformation. Therefore results 
concerning the stability of (3) are applicable to (1). Amari(3) studied the dynamics of 
equation (3) in networks with random conections. He found that collective variables 
corresponding to the mean activation and its second moment must exhibit either stable 
or bistable behaviour. More recently, Hopfield(2) has shown how to construct content 
addressable memories from symmetrically connected networks with this same 
dynamical equation. The symmetric connections in the network gaurantee global 
stability. The solution of equation (1) is also globally asymptotically stable if w can be 
transformed into a lower triangular matrix by row and column exchange operations. 
This is because in such a case the network is a simply a feedforward network and the 
output can be expressed as an explicit function of the input. No Liapunov function 
exists for arbitrary weights as can be demonstrated by constructing a set of weights 
which leads to oscillation. In practice, it is found that oscillations are not a problem 
and that the system converges to fixed points unless special weights are chosen. 
Therefore it shall be assumed, for the purposes of deriving the backpropagation 
equations, that the system ultimately settles down to a fixed point. 

Consider a system of N neurons, or units, whose dynamics is determined by 
equation (1). Of all the units in the network we will arbitrarily define some subset of 
them (A) as input units and some other subset of them (0) as output units. Units 
which are neither members of A nor 0 are denoted hidden units. A unit may be 
simultaneously an input unit and an output unit. The external environment influences 
the system through the source term, I. If a unit is an input unit, the corresponding 
component of I is nonzero. To make this more precise it is useful to introduce a 
notational convention. Suppose that <I> represent some subset of units in the network 
then the function 8i<I> is defined by 

1 if i-th unit is a member of <I> 
8'm= { 

1'V 0 th o erwise 

In terms of this function, the components of the I vector are given by 

(4) 

(5) 
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where ~i is detennined by the external environment. 
Our goal will be to fmd a local algorithm which adjusts the weight matrix w so that 

a given initial state XO = x(to)' and a given input I result in a fixed point, xoo= x(too), 
whose components have a desired set of values Ti along the output units. This will be 
accomplished by minimizing a function E which tneasures the distance between the 
desired fixed point and the actual fixed point i.e., 

1 N 
E =- :E Ji2 (6) 

2 i=l 
where 

J. - (T. - xoo. ) e'n I - I I I.u. (7) 

E depends on the weight matrix w through the fixed point Xoo(w). A learning 
algorithm drives the fixed points towards the manifolds which satisfy xi 00 = Ti on the 
output units. One way of accomplishing this with dynamics is to let the system evolve 
in the weight space along trajectories which are antiparallel to the gradient of E. In 

. other words, 

dE 
dWi/dt = - T\ -dw .. 

IJ 

(8) 

where T\ is a numerical constant which defines the (slow) time scale on which w 
changes. T\ must be small so that x is always essentially at steady state, i.e. 
x(t) == xoo. It is important to stress that the choice of gradient descent for the learning 
dynamics is by no means unique, nor is it necessarily the best choice. Other learning 
dynamics which employ second order time derivatives (e.g. the momentum 
method(5» or which employ second order space derivatives (e.g. second order 
backpropagation(8» may be more useful in particular applications. However, equation 
(8) does have the virtue of being the simplest dynamics which minimizes E. 

On performing the differentiations in equation (8), one immediately obtains 

dxoo 
k 

dwrs/dt = T\ 1: Jk a 
k wrs 

(9) 

The derivative of xoo k with respect to w rs is obtained by first noting that the fixed 
points of equation (1) satisfy the nonlinear algebraic equation 

Xoo. = g·(:Ewooxoo.) + J. (10) 
I I. IJ J I' 

J 
differentiating both sides of this equation with respect to Wrs and finally solving for 
dxooId dWrs' The result is 

dXook 
- = (L-1)kr gr'(Ur)xoo s (11) 
dWrs 

where gr' is the derivative of gr and where the matrix L is given by 

(12) 

Bii is the Kroneker B function ( BU= 1 if i=j, otherwise Bij = 0). On substituting (11) 
into (9) one obtains the remarkablY simple form 



where 
dWrsldt = 11 YrXoo s 

Yr = gr'(ur) LJk(L -1)kr 
k= 
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(13) 

(14) 

Equations (13) and (14) specify a fonnallearning rule. Unfortunately, equation 
(14) requires a matrix inversion to calculate the error signals Yk' Direct matrix 
inversions are necessarily nonlocal calculations and therefore this learning algorithm is 
not suitable for implementation as a neural network. Fortunately, a local method for 
calculating Yr can be obtained by the introduction of an associated dynamical system. 
To obtain this dynamical system fIrst rewrite equation (14) as 

LLrk (Yr / gr'(ur)} = Jk . (15) 
r 

Then multiply both sides by fk'(uk)' substitute the explicit form for L and finally sum 
over r. The result is 

o = -Yk + gk'(uk){ LWrkYr + Jk} . (16) 
r 

One now makes the observation that the solutions of this linear equation are the fIxed 
points of the dynamical system given by 

dYk/dt = - Yk +gk'(uk){LWrkYr + Jk} . (17) 
r 

This last step is not unique, equation (16) could be transformed in various ways 
leading to related differential equations, cf. Pineda(9). It is not difficult to show that 
the frrst order fInite difference approximation (with a time step ~t = 1) of equations 
(1), (13) and (17) has the same form as the conventional backpropagation algorithm. 

Equations (1), (13) and (17) completely specify the dynamics for an adaptive 
neural network, provided that (1) and (17) converge to stable fixed points and 
provided that both quantities on the right hand side of equation (13) are the steady 
state solutions of (1) and (17). 

It was pointed out by Almeida(10) that the local stability of (1) is a sufficient 
condition for the local stability of (17). To prove this it suffices to linearize equation 
(1) about a stable fixed point. The resulting linearized equation depends on the same 
matrix L whose transpose appears in the derivation of equation (17), cf. equation 
(15). But Land LT have the same eigenValues, hence it follows that the fIXed points 
of (17) must also be locally stable if the fIxed points of (1) are locally stable. 

Learning multiple associations 

It is important to stress that up to this point the entire discussionhas assumed that I 
and T are constant in time, thus no mechanism has been obtained for learning multiple 
input/output associations. Two methods for training the network to learn multiple 
associations are now discussed. These methods lead to qualitatively different learning 
behaviour. 

Suppose that each input/output pair is labeled by a pattern label n, i.e. {In ,Tn}. 
Then the energy function which is minimized in the above discussion must also 
depend on this label since it is an implicit function of the In ,Tn pairs. In order to 
learn multiple input/output associations it is necessary to minimize all the E[n] 
simultaniously. In otherwords the function to minimize is 

(18) 
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where the sum is over all input/output associations. From (18) it follows that the 
gradient for Etotal is simply the sum of the gradients for each association, hence the 
corresponding gradient descent equation has the form, 

dWijldt = 11 L yOOi[a] xOOia] . (19) 
a 

In numerical simulations, each time step of (19) requires relaxing (1) and (17) for each 
pattern and accumulating the gradient over all the patterns. This fonn of the algorithm 
is deterministic and is guaranteed to converge because, by construction, Etotal is a 
Liapunov function for equation (19). However, the system may get stuck m a local 
minimum. This method is similar to the master/slave approach of Lapedes and 
Farber(1l). Their adaptive equation, which plays the same role as equation (19), also 
has a gradient form, although it is not strictly descent along the gradient. For a 
randomly or fully connected network it can be shown that tbe number of oper~tions 
required per weight update in the master/slave fonnalis~ is proportional to N where 
N is the number of units. This is because there are O(N ) update equations and each 
equation requires O(N) operations (assuming some precomputation). On the other 
hand, in the backpropagation formalism each update equation re~uires only 0(1) 
operations because of their trivial outer product form. Also O(N ) operations are 
required t~ precompute XOO and yoo. The result is that each weight update requires 
only O(N ) operations. It is not possible to conclude from this argument that one or 
the other approach will be more efficient in a particular application because there are 
other factors to consider such as the number of patterns and the number of time steps 
required for x and y to converge. A detailed comparison of the two methods is in 
preparation. 

A second approach to learning multiple patterns is to use (13) and to change the 
patterns randomly on each time step. The system therefore receives a sequence of 
random impulses each of which attempts to minimize E[ ex] for a single pattern. One 
can then defme L(w) to be the mean E[a] (averaged over the distribution of patterns). 

L(w) = <E [w, la,Ta ]> (20) 

Amari(4) has pointed out that if the sequence of random patterns is stationary and if 
L(w) has a unique minimum then the theory of stochastic approximation guarantees 
that the solution of (13) wet) will converge to the minimum point '!min of L(w) to 
within a small fluctuating tenn which vanishes as 11 tends to zero. hVlaently 11 is 
analogous to the temperature parameter in simulated annealing. This second approach 
generally converges more slowly than the first, but it will ultimately converge (in a 
statistical sense) to the global minimum. 

In principle the fixed points, to which the solutions of (1) and (17) eventually 
converge, depend on the initial states. Indeed, Amari's(3) results imply that equation 
(1) is bistable for certain choices of weights. Therefore the presentation of multiple 
patterns might seem problematical since in both approaches the final state of the 
previous pattern becomes the initial state of the new pattern. The safest approach is to 
reinitialize the network to the same initial state each time a new pattern is presented. 
e.g. xi(t~ = 0.5 for all i. In practice the system learns robustly even if the initial 
conditIons are chosen randomly. 

Example 2: Recurrent higher order networks 

It is straightforward to apply the technique of the previous section to a dynamical 
system with higher order units. Higher order systems have been studied by 
Sejnowski (12) and Lee et al.(13). Higher order networks may have definite advantages 
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over networks with first order units alone A detailed discussion of the 
backpropagation fonnalism applied to higher order networks is beyond the scope of 
this paper. Instead, the adaptive equations for a network with purely n-th order units 
will be presented as an example of the fonnalism. To this end consider a dynamical 
system of the fonn 

dx·/dt - -x' + g'(lI!) + I· I - 1 1-:1 1 (21) 

where 
(22) 

and where there are n+ 1 indices and the summations are over all indices except i. The 
superscript on the weight tensor indicates the order of the correlation. Note that an 
additional nonlinear function f has been added to illustrate a further generalization. 
Both f and g must be differentiable and may be chosen to be sigmoids. It is not 
difficult, although somewhat tedious, to repeat the steps of the previous example to 
derive the adaptive equations for this system. The objective function in this case is the 
same as was used in the fIrst example, i.e. equation (6). The n-th order gradient 
descent equation has the fonn 

(23) 

Equation (23) illustrates the major feature of backpropagation which distinguishes it 
from other gradient descent algorithms or similar algorithms which make use of a 
gradient. Namely, that the gradient of the objective function has a very trivial outer 
product fonn. y (n)oo is the steady state solution of 

dy(n)k/dt = - y(n)k + gk'(uk) {fk'(xk)Ly(n)rkY (n)r + Jk}. (24) 
r 

The matrix v(n) plays the role of w in the previous example, however v(n) now 
depends on the state of the network according to 

y(n)ij = L'" L s<n)ijk"'l ( f(xk) ... f(xI)} (25) 
k I 

where is s(n) a tensor which is symmetric with respect to the exchange of the second 
index and all the indices to the right, i.e. 

S(n).. - w(n) + w(n) + ... + w(n) 
IJk"1 - ijk"'l ikj"'l ijl"'k . (26) 

Finally, it should be noted that: 1) If the polynomial ui is not homogenous, the 
adaptive equations are more complicated and involve cross tenns between the various 
orders and that: 2) The local stability of the n-th order backpropagation equations now 
depends on the eigenvalues of the matrix 

L .. = 0" - g.'(u·) f.'(x·) y(n) .. 
IJ IJ 1 1 1 1 IJ' (27) 

As before, if the forward propagation converges so will the backward propagation. 

Example 3: Adaptive content addressable memory 

In this section the adaptive equations for a content addressable memory 
(CAM) are derived as a fmal illustration of the generality of the formalism. Perhaps 
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the best known (and best studied) examples of dYnamical systems which exhibit CAM 
behaviour are the systems discussed by Hopfield(l). Hopfield used a nonadaptive 
method for programming the symmetric weight matrix. More recently Lapedes and 
Farber<ll) have demonstrated how to contruct a master dynamical system which can be 
used to train the weights of a slave system which has the Hopfield fonn. This slave 
system then performs the CAM operation. The resulting weights are not symmetric. 

The learning proceedure presented in this section is most closely related to the 
method of Lapedes and Farber in that a master network is used to adjust the weights of 
a slave network. In constrast to the afforementioned formalism, which requires a 
very large associated weight matrix for the master network, both the master and slave 
networks of the following approach make use of the same weight matrix. The CAM 
under consideration is based on equation (1). However, the interpretation of the 
dynamics will be somewhat different from the first section. The main difference is that 
the dynamics in the learning phase is constrained. The constrained dynamical system 
is denoted the master network. The unconstrained system is denoted the slave 
network. The units in the network are divided into only two sets: the set of visible 
units (V) and the set of internal or hidden units (H). There will be no distinction made 
between input and output units. Thus, I will generally be zero unless an input bias is 
needed in some application. 

The dynamical system will be used as an autoassociative memory, thus the 
memory recall is performed by starting the network at a particular initial state which 
represents partial information about a stored memory. More precisely, suppose that 
there exists a subset K of the visible units whose states are known to have values Ti' 
Then the initial state of the network is 

(28) 

where the bi are arbitrary. The CAM relaxes to the previously stored memory whose 
basin of attraction contains this partial state. 

Memories are stored by a master network whose topology is exactly the same 
as the slave network, but whose dynamics is somewhat modified. The state vector z 
of the master network evolves according to the equation 

N 
d~/dt = -~ + gi(LwikZk) + Ii (29) 

k=l 
where Z is defmed by 

Z, = T· E)·V + z· E)'H 1 1 1 1 1 • (30) 

The components of Z along the visible units are just the target value specified by T. 
This equation is useful as a master equation because if the weights can be chosen so 
that the zi of the visible units relax to the target values Ti,: then a fixed point of (29) is 
also a fixed point of (1). It can be concluded therefore, that by training the weights of 
the master network one is also training the weights of the slave network. Note that the 
form of Z implies that equation (29) can be rewritten as 

(31) 

where 
9 i = - LWikTk . (32) 

keY 
From equations (31) and (32) it is clear that the dynamics of the master system is 
driven by the thresholds which depend on the targets. 



where 

To derive the adaptive equations consider the objective function 
1 N 2 

Emaster = 2" 1: Ii (33) 
i=l 

(34) 
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It is straightforward to apply the steps discussed in previous sections to EJ1Iaster' This 
results in adaptive equations for the weights. The mathematical details Will be omitted 
since they are essentially the same as before, the gradient descent equation is 

dWi/dt = 11yoo iZOOj 

where yOO is the steady state solution of 

(35) 

dyk"dt = - Yk +g'k(vkHeiHLwrkYr + Ik} (36) 
r 

where vi i ~ikZoo k . (37) 

Equations (31), and (35)-37) define the dynamics of the master network. To train the 
slave network to be an autoassociative memory it is necessary to use the stored 
memories as the initial states of the master network, i.e. 

z·(t ) = T· e·V + b· eiH 1 0 1 1 1 (39) 

where bi is an arbitrary value as before. The previous discussions concerning the 
stability of the three equations (1), (13) and (17) apply to equations (31) (35) and (36) 
as well. It is also possible to derive the adaptive equations for a higher order 
associative network, but this will not be done here. 

Only preliminary computer simulations have been performed with this 
algorithm to verify their validity, but more extensive experiments are in progress. The 
fIrst simulation was with a fully connected network with 10 visible units and 5 hidden 
units. The training set consisted of four random binary vectors with the magnitudes of 
the vectors adjusted so that 0.1 ~ Ti S; 0.9. The equations were approximated by first 
order fmite difference equations with ~t = 1 and 11 = 1. The training was performed 
with the detenninistic method for learning multiple associations. Figure 1. shows 
Etotal as a function of the number of updates for both the master and slave networks. 
Etota! for the slave exhibits discontinous behaviour because the trajectory through the 
weight space causes x(to) to cut across the basins of attraction for the fixed points of 
equation (1). 

The number of updates required for the network to learn the patterns is 
relatively modest and can be reduced further by increasing 11. This suggests that 
learning can occur very rapidly in this type of network. 

Discussion 

The algorithms presented here by no means exhaust the class of possible 
adaptive algorithms which can be obtained with this formalism. Nor is the choice of 
gradient descent a crucial feature in this formalism. The key idea is that it is possible 
to express the gradient of an objective function as the outer product of vectors which 
can be calculated by dynamical systems. This outer produc2,form is also responsible 
for the fact that the gradient can be calculated with only O(N ) operations in a fully 
connected or randomly connected network. In fact the number of operations per 
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weight update is proportional to the number of connections in the network. The 
methods used here will generalize to calculate higher order derivatives of the objective 
function as well. 

The fact that the algorithms are expressed as differential equations suggests 
that they may be implemented in analog electronic or optical hardware. 

2.00 .....--------------, 

1.00 --"", .. ~ 

20 40 60 80 100 
Updates 

~ Master 

-.- Slave 

figure 1. Etota! as a function of the the number of updates. 
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