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ABSTRACT 

We have studied the basins of attraction for fixed point and 
oscillatory attractors in an electronic analog neural network. Basin 
measurement circuitry periodically opens the network feedback loop, 
loads raster-scanned initial conditions and examines the resulting 
attractor. Plotting the basins for fixed points (memories), we show 
that overloading an associative memory network leads to irregular 
basin shapes. The network also includes analog time delay circuitry, 
and we have shown that delay in symmetric networks can introduce 
basins for oscillatory attractors. Conditions leading to oscillation 
are related to the presence of frustration; reducing frustration by 
diluting the connections can stabilize a delay network. 

(1) - INTRODUCTION 

The dynamical system formed from an interconnected network of 
nonlinear neuron-like elements can perform useful parallel 
computation l - 5 . Recent progress in controlling the dynamics has 
focussed on algorithms for encoding the location of fixed pOints 1 ,4 
and on the stability of the flow to fixed points 3 • 5-8. An equally 
important aspect of the dynamics is the structure of the basins of 
attraction, which describe the location of all pOints in initial 
condition space which flow to a particular attractor10 . 22 . 

In a useful associative memory, an initial state should lead 
reliably to the "closest" memory. This requirement suggests that a 
well-behaved basin of attraction should evenly surround its attractor 
and have a smooth and regular shape. One dimensional basin maps 
plotting "pull in" probability against Hamming distance from an 
attract or do not reveal the shape of the basin in the high 
dimensional space of initial states9. 19 . Recently, a numerical study 
of a Hopfield network with discrete time and two-state neurons showed 
rough and irregular basin shapes in a two dimensional Hamming space, 
suggesting that the high dimensional basin has a complicated 
structure 10 . It is not known how the basin shapes change with the 
size of the network and the connection rule. 

We have investigated the basins of attraction in a network with 
continuous state dynamics by building an electronic neural network 
with eight variable gain sigmoid neurons and a three level (+,0,-) 
interconnection matrix. We have also built circuitry that can map 
out the basins of attraction in two dimensional slices of initial 
state space (Fig .1) . The network and the basin measurements are 
described in section 2. 
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In section 3, we show that the network operates well as an 
associative memory and can retrieve up to four memories (eight fixed 
points) without developing spurious attractors, but that for storage 
of three or more memories, the basin shapes become irregular. 

In section 4, we consider the effects of time delay. Real network 
components cannot switch infinitely fast or propagate signals 
instantaneously, so that delay is an intrinsic part of any hardware 
implementation of a neural network. We have included a controllable 
CCD (charge coupled device) analog time delay in each neuron to 
investigate how time delay affects the dynamics of a neural network. 
We find that networks with symmetric interconnection matrices, which 
are guaranteed to converge to fixed points for no delay, show 
collective sustained oscillations when time delay is present. By 
discovering which configurations are maximally unstable to 
oscillation, and looking at how these configurations appear in 
networks, we are able to show that by diluting the interconnection 
matrix, one can reduce or eliminate the oscillations in neural 
networks with time delay. 

(2) - NETWORK AND BASIN MEASUREMENT 

A block diagram of the network and basin measurement circuit is 
shown in fig.1. 
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Fi~.l Block diagram 
of the network and 
basin measurement 
system. 

The main feedback loop consists of non-linear amplifiers 
("neurons", see fig.2) with capacitive inputs and a resistor matrix 
allowing interconnection strengths of -l/R, 0, +l/R (R = 100 kn). In 
all basin measurements, the input capacitance was 10 nF, giving a 
time constant of 1 ms. A charge coupled device (CCD) analog time 
delay ll was built into each neuron, providing an adjustable delay per 
neuron over a range 0.4 - 8 ms. 



526 

50k 

1/ 

Inverting 
output Fig.2 Electronic neuron. 
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Inset: Nonlinear 
behavior at several 
different values of 
gain. 

Analog switches allow the feedback path to be periodically 
disconnected and each neuron input charged to an initial voltage. The 
network is then reconnected and settles to the attractor associated 
with that set of initial conditions. Two of the initial voltages are 
raster scanned (on a time scale that is long compared to the load/run 
switching time) with function generators that are also connected to 
the X and Y axes of a storage scope. The beam of the scope is 
activated when the network settles into a de sired at tractor, 
producing an image of the basin for that attractor in a two­
dimensional slice of initial condition space. The "attractor of 
interest" can be one of the 2 8 fixed points or an oscillatory 
attractor. 

A simple example of this technique is the case of three neurons 
with symmetric non-inverting connection shown in fig.3. 
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(3) BASINS FOR FIXED POINTS - ASSOCIATIVE MEMORY 

Two dimensional slices of the eight dimensional initial condition 
space (for the full network) reveal important qualitative features 
about the high dimensional basins. Fig. 4 shows a typical slice for 
a network programmed with three memories according to a clipped Hebb 
rule1, 12: 
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(1 ) 

where ~ is an N-component memory vector of l's and -l's, and m is 
the number of memories. The memories were chosen to be orthogonal 
(~a .~~ = N 8a~) . 
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Fi~. 4 A slice of initial condition space shows the basins of 
attraction for five of the six fixed points for three memories 
in eight-neuron Hopfield net. Learning rule was clipped Hebb 
(Eq.1). Neuron gain = 15. 

Because the Hebb rule (eq. 1) makes ~a and _~a stable attractors, a 
three-memory network will have six fixed point attractors. In fig.4, 
the basins for five of these attractors are visible, each produced 
with a different rastering pattern to make it distinctive. Several 
characteristic features should be noted: 

-- All initial conditions lead to one of the memories (or 
inverses), no spurious attractors were seen for three or four 
memories. This is interesting in light of the well documented 
emergence of spurious attractors at miN -15% in larger networks with 
discrete time2,lS. 

-- The basins have smooth and continuous edges. 
-- The shapes of the basins as seen in this slice are irregular. 

Ideally, a slice with attractors at each of the corners should have 
rectangular basins, one basin in each quadrant of the slice and the 
location of the lines dividing quadrants determined by the initial 
conditions on the other neurons (the "unseen" dimensions). With three 
or more memories the actual basins do not resemble this ideal form. 

(4) TIME DELAY, FRUSTRATION AND SUSTAINED OSCILLATION 

Arguments defining conditions which guarantee convergence to 
fixed points 3 , 5,6 (based, for example, on the construction of a 
Liapunov function) generally assume instantaneous communication 
between elements of the network. In any hardware implementation, 
these assumptions break down due to the finite switching speed of 
amplifiers and the charging time of long interconnect lines. 13 It is 
the ratio of delay/RC which is important for stability, so keeping 
this ratio small limits how fast a neural network chip can be 
designed to run. Time delay is also relevant to biological neural 
nets where propagation and response times are comparable. 14 ,lS 
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Our particular interest in this section is how time delay can 
lead to sustained oscillation in networks which are known to be 
stable when there is no delay. We therefore restrict our attention 
to networks with symmetric interconnection matrices (Tlj = Tjl)' 

An obvious ingredient in producing oscillations in a delay 
network is feedback, or stated another way, a graph representing the 
connections in a network must contain loops. 

The simplest oscillatory structure made of delay elements is the 
ring oscillator (fig.Sa). Though not a symmetric configuration, the 
ring oscillator illustrates an important point: the ring will 
oscillate only when there is negative feedback at dc - that is, when 
the product of'interconnection around the loop is negative. Positive 
feedback at dc (loop product of connections > 0) will lead to 
saturation. 

Observing various symmetric configurations (e.g. fig.Sb) in the 
delayed-neuron network, we find that a negative product of 
connections around a loop is also a necessary condition for sustained 
oscillation in symmetric circuits. An important difference between 
the ring (fig.Sa) and the symmetric loop (fig.Sb) is that the period 
of oscillation for the ring is the total accumulated delay around the 
ring - the larger the ring the longer the period. In contrast, for 
those symmetric configurations which have oscillatory attractors, the 
period of oscillation is roughly twice the delay, regardless of the 
size of the configuration or the value of delay. This indicates that 
for symmetric configurations the important feedback path is local, 
not around the loop. 

I·\:~~~illator 
(NEGATIVE 

••• ,............ FEEDBACK) 

/;\\ ~bJmmetric 
1/ \ \ (FI~~~TRATED) ................ 

otl ~ ••••• . h.", 

• =lime delay 
neuron 

/' =non-inverting 
connection 

,,:1' .. inverting 
.• ' connection 

Fir;;r . S (a) A ring oscillator: 
needs negative feedback at dc 
to oscillate. (b) Symmetrical­
ly connected triangle. This 
configuration is "frustrated" 
(defined in text), and has 
both oscillatory and fixed 
point attractors when neurons 
have delay . 

Configurations with loop connection product < 0 are important in 
the theory of spin glasses 16 , where such configurations are called 
"frustrated." Frustration in magnetic (spin) systems, gives a measure 
of "serious" bond disorder (disorder that cannot be removed by a 
change of variables) which can lead to a spin glass state. 16.17 

Recent results based on the similarity between spin glasses and 
symmetric neural networks has shown that storage capacity limitations 
can be understood in terms of this bond disorder. 18 ,19 Restating our 
observation above: We only find stable oscillatory modes in symmetric 
networks with delay when there is frustration. A similar result for a 
sign-symmetric network (Tlj, Tjl both ~o or $0) with no delay is 
described by Hirsch. 6 

We can set up the basin measurement system (fig.l) to plot the 
basin of attraction for the oscillatory mode. Fig.6 shows a slice of 
the oscillatory basin for a frustrated triangle of delay neurons. 
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Fig.6 Basin for oscillatory attractor (cross-hatched region) 
in frustrated triangle of delay-neurons. Connections were 
all symmetric and inverting; other frustrated configurations 
(e.g. two non-inverting, one inverting, all symmetric) were 
similar. (6a): delay = O.48RC, inset shows trajectory to fixed 
point and oscillatory mode for two close-lying initial 
conditions. (6b): delay = O. 61RC, basin size increases. 
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A fully connected feedback associative network with more that one 
memory will contain frustration. As more memories are added, the 
amount of frustration will increases until memory retrieval 
disappears. But before this point of memory saturation is reached, 
delay could cause an oscillatory basin to open. In order to design 
out this possibility, one must understand how frustration, delay and 
global stability are related. A first step in determining the 
stability of a delay network is to consider which small 
configurations are most prone to oscillation, and then see how these 
"dangerous" configurations show up in the network. As described 
above, we only need to consider frustrated configurations. 

A frustrated configuration of neurons can be sparsely connected, 
as in a loop, or densely connected, with all neurons connected to all 
others, forming what is called in graph theory a "clique." 
Representing a network with inverting and non-inverting connections 
as a signed graph (edges carry + and -), we define a frustrated clique 
as a fully connected set of vertices (r vertices,' r (r-l) /2 edges) 
with all sets of three vertices in the clique forming frustrated 
triangles. Some examples of frustrated loops and cliques are shown in 
fig. 7. Notice that neurons connected with all inverting symmetric 
connections, a configuration that is useful as 
circuit, is a frustrated clique. 

a "winner-take-all" 

<> \·······1 \! ..... ·····~FRUSTRATED 
,/ \! ! LOOPS 

.' . . . ........ 
,~ 

/ \ .... =inverting /",non-inverting 
,.. .. symmetric connection symmetric connection 
, .~~----------------~--------------~ •...............• ..•.. ..' FRUSTRATED 

~; . ::::.j..\.>. /i~;~/' CLIQUES 
: \">'" ,.:(/ ~~);;.::~:. (fully connected; 

: ! •..•... ~: ~:" ;;.!: .1'''. : all triangles . .. ,' '." ;.~~r.~ ,'-................ •...........• '" .. ' frustrated) 

FiQ.7 Examples of frustrated 
loops and frustrated 
cliques. In the graph 
representation vertices 
(black dots) are neurons 
(with delay) and undirected 
edges are symmetric 
connections. 
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We find that delayed neurons connected in a frustrated loop 
longer than three neurons do not show sustained oscillation for any 
value of delay (tested up to delay = 8RC). In contrast, when delayed 
neurons are connected in any frustrated clique configuration, we do 
find basins of attraction for sustained oscillation as well as fixed 
point attractors, and that the larger the frustrated clique, the more 
easily it oscillates in the following ways: (1) For a given value of 
delay/RC, the size of the oscillatory basin increases with r, the 
size of the frustrated clique (fig. 8). (2) The critical value of 
delay at which the volume of the oscillatory basin goes to zero 
decreases with increasing r (fig.9); For r=8 the critical delay is 
already less than 1/30 RC. 

/\ 1.1\ •..............• .: .............. =-
Fig.8 Size of basin 
for oscillatory mode 
increases with size of 
frustrated clique. The 
delay is 0.46RC per 
neuron in each picture. 
Slices are in the space 
of initial voltages on 
neurons 1 and 2, other 
initial voltages near 

1 
iG 
u 
. -
~ 

u -4: 
0:-
....... 
>-co 
Q) 
"0 -

.1 

• 
• 

• • •• 

1 size of frustrated clique (r) 10 

zero. 

Fig.9 The critical valu,? of delay 
where the oscillatory mode vanishes . 
Measured by reducing delay until 
system leaves oscillatory attractor . 
Delay plotted in units of the 
characteristic time RioC, where Rio 
= (Lj 1 /Rij) -1=10Sn/ (r-1) and C=10nF, 
indicating that the critical delay 
decreases faster than 1/(r-1). 

Having identified frustrated cliques as the maximally unstable 
configuration of time delay neurons, we now ask how many cliques of a 
given size do we expect to find in a large network. 

A set of r vertices (neurons) can be fully connected by r(r-1)/2 
edges of two types (+ or -) to form 2r (r-1)/2 different cliques. Of 
these, 2 (r-1) will be frustrated cliques. Fig .·10 shows all 2 (4-1) =8 
cases for r=4. 

~ A ,':11 : 
" : II i 

" ,', II . r.III' 1'1',1 
~ ............... ~ .---. ............... .-------'. 

Eig.10 All graphs of size r=4 that are frustrated cliques 
(fully connected, every triangle frustrated.) Solid lines = 
positive edges, dashed lines = negative edges. 



531 

For a randomly connected network, this result combined with 
results from random graph theory20 gives an expected number of 
frustrated cliques of size r in a network of size N, EN(r): 

N 
EN(r) = (r) c(r,p) 

c(r,p) = r(r-l) (r-2)/2 pr(r-l)/2 

(2) 

(3) 

N 
where (r) is the binomial coefficient and c(r,p) is defined as the 

concentration of frustrated cliques. p is the connectance of the 
network, defined as the probability that any two neurons are 
connected. Eq.3 is the special case where + and - edges (non­
inverting, inverting connections) are equally probable. We have also 
generalized this result to the case p(+)~p(-). 

Fig.11 shows the dramatic reduction in the concentration of all 
frustrated configurations in a diluted random network. For the 
general case (p(+)~p(-» we find that the negative connections 
affect the concentrations of frustrated cliques more strongly than 
the positive connections, as expected (Frustration requires 
negatives, not positives, see fig. 10) . 

10°y---------~------~--~--r__r~~~_, 

connectance (p) 1 

Fig.11 Concentration of 
frustrated cliques of size 
r=3,4,S,6 in an unbiased 
random network, from eq.3. 
Concentrations decrease 
rapidly as the network is 
diluted, especially for 
large cliques (note: log 
scale) . 

When the interconnections in a network are specified by a 
learning rule rather than at random, the expected numbers of any 
configuration will differ from the above results. We have compared 
the number of frustrated triangles in large three-valued (+1,0,-1) 
Hebb interconnection matrices (N=100,300,600) to the expected number 
in a random matrix of the same size and connectance. The Hebb matrix 
was constructed according to the rule: 

Tij = Zk (La=l,m ~ia ~ja) ; Tii = ° (4a) 
Zk(X) = +1 for x > k; 0 for -k $x $k; -1 for x < -k; (4b) 

m is the number of memories, Zkis a threshold function with cutoff 

k, and ~a is a random string of l's and -l's. The matrix constructed 
by eq.4 is roughly unbiased (equal number of positive and negative 
connections) and has a connectance p(k). Fig.12 shows the ratio of 
frustrated triangles in a diluted Hebb matrix to the expected number 
in a random graph with the same connectance for different numbers of 
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memories stored in the Hebb matrix. At all values of connectance, the 
Hebb matrix has fewer frustrated triangles than the random matrix by 
a ratio that is decreased by diluting the matrix or storing fewer 
memories. The curves do not seem to depend on the size of the matrix, 
N. This result suggests that diluting a Hebb matrix breaks up 
frustration even more efficiently than diluting a random matrix. 

." • ratio 1TI=o15 N .. 300 
CD 0.9 • ratio m-25 
~ FiQ'.12 The number of frustrated a ratio m-40 
I'l! • ratio maS5 triangles in a (+,0,-) Hebb rule ·c 0.7 - • ratio 1TI=o100 matrix (300x300) divided by the "C 

~ expected number in a random 
~ 0.5 signed graph with equal 
::l 
.:: connectance. The different sets 
'0 0.3 of points are for different 
.2 
T§ numbers of random memories in the 

0.1 Hebb matrix. The lines are 
. 1 connectance guides to the eye. 

The sensitive dependence of frustration on connectance suggests 
that oscillatory modes in a large neural network with delay can be 
eliminated by diluting the interconnection matrix. As an example, 
consider a unbiased random network with delay = RC/10. From fig.9, 
only frustrated cliques of size r=5 or larger have oscillatory basins 
for this value of delay; frustration in smaller configurations in the 
network cannot lead to sustained oscillation in the network. 
Diluting the connectance to 60% will reduce the concentration of 
frustrated cliques with r=5 by a factor of over 100 and r=6 by a 
factor of 2000. The reduction would be even greater for a clipped 
Hebb matrix. 

Results from spin glass theory21 suggest that diluting a clipped 
Hebb matrix can actually improve the storage capacity for moderated 
dilution, with a maximum in the capacity at a connectance of 61%. To 
the extent this treatment applies to an analog continuous-time 
network, we should expect that by diluting connections, oscillatory 
modes can be killed before memory capacity is compromised. 

We have confirmed the stabilizing effect of dilution in our 
network: For a fully connected eight neuron network programmed with 
three orthogonal memories according to eq.l, adding a delay of 0.4RC 
opens large basins for sustained oscillation. By randomly diluting 
the interconnections to p ...... 0.85, we were able to close the 
oscillatory basins and recover a useful associative memory. 

SUMMARY 

We have investigated the structure of fixed point and oscillatory 
basins of attraction in an electronic network of eight non-linear 
amplifiers with controllable time delay and a three value (+,0,-) 
interconnection matrix. 

For fixed point attractors, we find that the network performs 
well as an associative memory - no spurious attractors were seen for 
up to four stored memories - but for three or more memories, the 
shapes of the basins of attraction became irregular. 
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A network which is stable with no delay can have basins for 
oscillatory at tractors when time delay is present. For symmetric 
networks with time delay, we only observe sustained oscillation when 
there is frustration. Frustrated cliques (fully connected 
configurations with all triangles frustrated), and not loops, are 
most prone to oscillation, and the larger the frustrated clique, the 
more easily it oscillates. The number of the se "dangerous" 
configurations in a large network can be greatly reduced by diluting 
the connections. We have demonstrated that a network with a large 
basin for an oscillatory attractor can be stabilized by dilution. 
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