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Abstract 

A general method, the tensor product representation, is described for the distributed representation of 
value/variable bindings. The method allows the fully distributed representation of symbolic structures: 
the roles in the structures, as well as the fillers for those roles, can be arbitrarily non-local. Fully and 
partially localized special cases reduce to existing cases of connectionist representations of structured 
data; the tensor product representation generalizes these and the few existing examples of fuUy 
distributed representations of structures. The representation saturates gracefully as larger structures 
are represented; it penn its recursive construction of complex representations from simpler ones; it 
respects the independence of the capacities to generate and maintain multiple bindings in parallel; it 
extends naturally to continuous structures and continuous representational patterns; it pennits values to 
also serve as variables; it enables analysis of the interference of symbolic structures stored in 
associative memories; and it leads to characterization of optimal distributed representations of roles 
and a recirculation algorithm for learning them. 

Introduction 

Any model of complex infonnation processing in networks of simple processors must solve the 
problem of representing complex structures over network elements. Connectionist models of realistic 
natural language processing, for example, must employ computationally adequate representations of 
complex sentences. Many connectionists feel that to develop connectionist systems with the 
computational power required by complex tasks, distributed representations must be used: an 
individual processing unit must participate in the representation of multiple items, and each item must 
be represented as a pattern of activity of multiple processors. Connectionist models have used more or 
less distributed representations of more or less complex structures, but little if any general analysis of 
the problem of distributed representation of complex infonnation has been carried out This paper 
reports results of an analysis of a general method called the tensor product representation. 

The language-based fonnalisms traditional in AI pennit the construction of arbitrarily complex 
structures by piecing together constituents. The tensor product representation is a connectionist 
method of combining representations of constituents into representations of complex structures. If the 
constituents that are combined have distributed representations, completely distributed representations 
of complex structures can result each part of the network is responsible for representing multiple 
constituents in the structure, and each constituent is represented over multiple units. The tensor 
product representation is a general technique, of which the few existing examples of fully distributed 
representations of structures are particular cases. 

The tensor product representation rests on identifying natural counterparts within connectionist 
computation of certain fundamental elements of symbolic computation. In the present analysis, the 
problem of distributed representation of symbolic structures is characterized as the problem of taking 
complex structures with certain relations to their constituent symbols and mapping them into activity 
vectors--patterns of activation-with corresponding relations to the activity vectors representing their 
constituents. Central to the analysis is identifying a connectionist counterpart of variable binding: a 
method for binding together a distributed representation of a variable and a distributed representation 
of a value into a distributed representation of a variable/value binding-a representation which can 
co-exist on exactly the same network units with representations of other variable/value bindings, with 
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limited confusion of which variables are bound to which values. 
In summary, the analysis of the tensor product representation 

(1) provides a general technique for constructing fully distributed representations of 
arbitrarily complex structures; 

(2) clarifies existing representations found in particular models by showing what particular 
design decisions they embody; 

(3) allows the proof of a number of general computational properties of the representation; 
(4) identifies natural counterparts within connectionist computation of elements of symbolic 

computation, in particular, variable binding. 

The recent emergence to prominence of the connectionist approach to AI raises the question of the 
relation between the non symbolic computation occurring in connectionist systems and the symbolic 
computation traditional in AI. The research reported here is part of an attempt to marry the two types 
of computation, to develop for AI a form of computation that adds crucial aspects of the power of 
symbolic computation to the power of connectionist computation: massively parallel soft constraint 
satisfaction. One way to marry these approaches is to implement serial symbol manipulation in a 
connectionist system 1.2. The research described here takes a different tack. In a massively parallel 
system the processing of symbolic structures-for example, representations of parsed sentences-need 
not be limited to a series of elementary manipulations: indeed one would expect the processing to 
involve massively parallel soft constraint satisfaction. But in order for such processing to occur, a 
satisfactory answer must be found for the question: How can symbolic structures. or structured data in 
general. be naturally represented in connectionist systems? The difficulty here turns on one of the 
most fundamental problems for relating symbolic and connectionist computation: How can variable 
binding be naturally performed in connectionist systems? 

This paper provides an overview of a lengthy analysis reported elsewhere3 of a general 
connectionist method for variable binding and an associated method for representing structured data. 
The purpose of this paper is to introduce the basic idea of the method and survey some of the results; 
the reader is referred to the full report for precise defmitions and theorems, more extended examples. 
and proofs. 

The problem 

Suppose we want to represent a simple structured object, say a sequence of elements, in a 
connectionist system. The simplest method, which has been used in many models, is to dedicate a 
network processing unit to each possible element in each possible position4-9. This is a purely local 
representation. One way of looking at the purely local representation is that the binding of 
constituents to the variables representing their positions is achieved by dedicating a separate unit to 
every possible binding, and then by activating the appropriate individual units. 

Purely local representations of this sort have some advantages 10, but they have a number of serious 
problems. Three immediately relevant problems are these: 

(1) The number of units needed is #elements * #positions; most of these processors are 
inactive and doing no work at any given time. 

(2) The number of positions in the structures that can be represented has a fixed, rigid upper 
limit. 

(3) If there is a notion of similar elements, the representation does not take advantage of this: 
similar sequences do not have similar representations. 

The technique of distributed representation is a well-known way of coping with the first and third 
problemsll- 14. If elements are represented as patterns of activity over a population of processing units, 
and if each unit can participate in the representation of many elements, then the number of elements 
that can be represented is much greater than the number of units, and similar elements can be 
represented by similar patterns, greatly enhancing the power of the network to learn and take 
advantage of generalizations. 
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Distributed representations of elements in structures (like sequences) have been successfully used 
in many modelsl.4.S.1S-18. For each position in the structure, a pool of units is dedicated. The element 
occurring in that position is represented by a pattern of activity over the units in the pool. 

Note that this technique goes only part of the way towards a truly distributed representation of the 
entire structure. While the values of the variables defming the roles in the structure are represented by 
distributed patterns instead of dedicated units, the variables themselves are represented by localized, 
dedicated pools. For this reason I will call this type of representation semi-local. 

Because the representation of variables is still local, semi-local representations retain the second of 
the problems of purely local representations listed above. While the generic behavior of connectionist 
systems is to gradually overload as they attempt to hold more and more information, with dedicated 
pools representing role variables in structures, there is no loading at all until the pools are 
exhausted-and then there is complete saturation. The pools are essentially registers, and the 
representation of the structure as a whole has more of the characteristics of von Neumann storage than 
connectionist representation. A fully distributed connectionist representation of structured data would 
saturate gracefully. 

Because the representation of variables in semi-local representations is local, semi-local 
representations also retain part of the third problem of purely local representations. Similar elements 
have similar representations only if they occupy exactly the same role in the structure. A notion of 
similarity of roles cannot be incorporated in the semi-local representation. 

Tensor product binding 

There is a way of viewing both the local and semi-local representations of structures that makes a 
generalization to fully distributed representations immediately apparent. Consider the following 
structure: strings of length no more than four letters. Fig. 1 shows a purely local representation and 
Fig. 2 shows a semi-local representation (both of which appeared in the letter-perception model of 
McClelland and Rumelharr4,s). In each case, the variable binding has been viewed in the same way. 
On the left edge is a set of imagined units which can represent an element in the structure-a ftller of a 
role; these are the filler units. On the bottom edge is a set of imagined units which can represent a 
role: these are the role units. The remaining units are the ones really used to represent the structure: 
the binding units. They are arranged so that there is one for each pair offiller and role units. 

In the purely local case, both the filler and the role are represented by a "pattern of activity" 
localized to a single unit In the semi-local case, the ftiler is represented by a distributed pattern of 
activity but the role is still represented by a localized pattern. In either case, the binding of the filler to 
the role is achieved by a simple product operation: the activity of each binding unit is the product of 
the activities of the associated ftller and role unit In the vocabulary of matrix algebra, the activity 
representing the value/variable binding forms a matrix which is the outer product of the activity vector 
representing the value and the activity vector representing the variable. In the terminology of vector 
spaces, the value/variable binding vector is the tensor product of the value vector and the variable 
vector. This is what I refer to as the tensor product representation for variable bindings. 

Since the activity vectors for roles in Figs. 1 and 2 consist of all zeroes except for a single activity 
of 1, the tensor product operation is utterly trivial. The local and semi-local cases are trivial special 
cases of a general binding procedure capable of producing completely distributed representations. Fig. 
3 shows a distributed case designed for visual transparency. Imagine we are representing speech data, 
and have a sequence of values for the energy in a particular formant at successive times. In Fig. 3, 
distributed patterns are used to represent both the energy value and the variable to which it is bound: 
the position in time. The particular binding shown is of an energy value 2 (on a scale of 1-4) to the 
time 4. The peaks in the patterns indicate the value and variable being represented. 
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Fig. 1. Purely local representation of strings. Fig. 2. Semi-local representation of strings. 

If the patterns representing the value and variable being bound together are not as simple as those 
used in Fig. 3, the tensor product pattern representing the binding will not of course be particularly 
visually infonnative. Such would be the case if the patterns for the fIllers and roles in a structure were 
defmed with respect to a set of filler and role features: such distributed bindings have been used 
effectively by McClelland and Kawamoto18 and by Derthick19,20. The extreme mathematical 
simplicity of the tensor product operation makes feasible an analysis of the general, fully distributed 
case. 

Each binding unit in the tensor product representation corresponds to a pair of imaginary role and 
filler units. A binding unit can be readily interpreted semantically if its corresponding fIller and role 
units can. The activity of the binding unit indicates that in the structure being represented an element 
is present which possesses the feature indicated by the corresponding filler unit and which occupies a 
role in the structure which possesses the feature indicated by the corresponding role unit. The binding 
unit thus detects a conjunction of a pair of fIller and role features. (Higher-order conjunctions will 
arise later.) 

A structure consists of multiple fIller/role bindings. So far we have only discussed the 
representation of a single binding. In the purely local and semi-local cases, there are separate pools for 
different roles, and it is obvious how to combine bindings: simultaneously represent them in the 
separate pools. In the case of a fully distributed tensor product binding (eg., Fig. 3), each single 
binding is a pattern of activity that extends across the entire set of binding units. The simplest 
possibility for combining these patterns is simply to add them up; that is, to superimpose all the 
bindings on top of each other. In the special cases of purely local and semi-local representations, this 
procedure reduces trivially to simultaneously representing the individual fillers in the separate pools. 
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Fig. 3. A visually transparent fully distributed tensor product representation. 

The process of superimposing the separate bindings produces a representation of structures with 
the usual connectionist properties. If the patterns representing the roles are not too similar, the 
separate bindings can all be kept straight. It is not necessary for the role patterns to be non­
overlapping, as they are in the purely local and semi-local cases; it is sufficient that the patterns be 
linearly independent. Then there is a simple operation that will correctly extract the filler for any role 
from the representation of the structure as a whole. If the patterns are not just linearly independent, 
but are also orthogonal, this operation becomes quite direct; we will get to it shortly. For now, the 
point is that simply superimposing the separate bindings is sufficient. If the role patterns are not too 
similar, the separate bindings do not interfere. The representation gracefully saturates if more and 
more roles are filled, since the role patterns being used lose their distincmess once their number 
approaches that of the role units. 

Thus problem (2) listed above, shared by purely local and semi-local representations, is at last 
removed in fully distributed tensor product representations: they do not accomodate structures only up 
to a certain rigid limit, beyond which they are completely saturated; rather, they saturate gracefully. 
The third problem is also fully addressed, as similar roles can be represented by similar patterns in the 
tensor product representation and then generalizations both across similar fillers and across similar 
roles can be learned and exploited. 

The defmition of the tensor product representation of structured data can be summed up as follows: 

(a) Let a set S of structured objects be given a role decomposition: a set of fillers, F, a set of 
roles R , and for each object s a corresponding set of bindings 
P(s) = {f Ir : f fills role r in s }. 

(b) Let a connectionist representation of the fillers F be given; f is represented by the activity 
vector r. 

(c) Let a connectionist representation of the roles R be given; r is represented by the activity 












